
RedBrick AI Docs

Getting Started
Rapid and collaborative medical data annotation.

RedBrick AI is a purpose-built SaaS application created to help healthcare AI teams

annotate medical data more effectively. RedBrick AI offers web-based annotation

tools for CTs, MRIs, X-rays, etc., as well as comprehensive project management and

quality control tools.

Request a free trial or product demonstration by contacting us through our website:

https://redbrickai.com.

Our documentation offers a comprehensive overview of the features and

functionality of RedBrick AI. Before diving deep into the documentation, working

through our use-case-driven guides to discover RedBrick AI may be useful.

Getting started with guides

https://redbrickai.com/

This guide showcases how to use RedBrick

AI to segment the aorta and iliac arteries

in Abdominal Computed Tomography

Angiography scans.

This guide showcases how to use

advanced segmentation tools to segment

organs like the liver and kidneys in a

abdominal CT scan.

This guide provides a step-by-step

overview of configuring your viewer for a

3D MRI study and performing

segmentation of necrosis and edema.

Using RedBrick AI for FDA clinical

validation studies. In this guide we walk

through a hypothetical study for a chest

anomaly algorithm.

In this guide we will focus on RedBrick AI’s

features for breast imaging. We’ll walk

through three projects focusing on

different modalities, and the special

features the platform has for efficient

viewing and annotation.

https://blog.redbrickai.com/blog-posts/guides-6235d659548b-segmenting-the-aorta-and-iliac-arteries-in-abdominal-cta-scans
https://blog.redbrickai.com/blog-posts/guides-6235d659548b-segmentation-of-large-organs-in-abdominal-ct-scans
https://blog.redbrickai.com/blog-posts/guides-6235d659548b-volumetric-segmentation-of-necrosis-and-edema
https://blog.redbrickai.com/blog-posts/guides-6235d659548b-fda-clinical-validation-study-for-chest-x-ray-anomaly-detection-algorithm
https://blog.redbrickai.com/blog-posts/guides-6235d659548b-mammography-dbt-and-breast-mri

https://blog.redbrickai.com/blog-posts/guides-6235d659548b-mammography-dbt-and-breast-mri

Team & Organization

Organization and Project Roles

Your Organization is a unique structure that RedBrick AI creates for you and your

team.

All of the work you do on RedBrick AI and any resources you use will be housed

within your Organization. This includes your team members, your Taxonomies, your

Projects, and more.

In RedBrick AI, a Project is a workspace to which you can upload data and inside of

which you perform annotation work within a pipeline defined by you.

Overview

Within a Project, you can:

While all of your team members have to be invited to your Organization in order for

them to access RedBrick AI, you can easily configure their permissions based on their

Roles.

RedBrick AI offers role-based access control at two levels - the Organization level

and the Project level. Each of these roles governs what actions a user can perform

at the respective level.

upload images, volumes, and segmentation files;

assign work to your labelers and reviewers on a Task level;

perform and review annotation work;

define Project-level permissions for labelers, reviewers, administrators, etc.;

invite specific members of your team and regulate their access to various Stages;

view a range of statistics on the quality of your labelers' work, time spent;

configure custom toolkits and Project-level settings specific to your use case;

and much, much more!

Roles

https://docs.redbrickai.com/projects/task-assignment
https://docs.redbrickai.com/annotation/layout-and-multiple-volumes/custom-hanging-protocol
https://docs.redbrickai.com/projects/consensus-inter-annotator-agreement

While each Organization can only have a single Org Owner, there is no limit to the

number of Org Admins and Org Members an Organization can have.

Org Owner

Organization Level: Has access to all assets within

an Organization; has the ability to create, edit, and

delete assets, including the Organization itself.

Project Level: Org Owners are automatically added to all Projects as

Project Admins (see below).

Org Admin

Organization Level: Has access to all assets within

an Organization; has the ability to create, edit,

and delete assets, but not the Organization itself.

Project Level: Org Admins are automatically added to all Projects as

Project Admins (see below).

Org Member Organization Level: cannot create or

edit resources at the Organization level.

Project Level: Org Members are not automatically added to any

Organization-level Roles

If you would like to change your Organization's Org Owner, please reach out to our

support team at support@redbrickai.com.

Projects, and must be invited to a Project by a Project Admin (see

below).

Role Permissions

Project Admin

Can perform administrative actions

at the Project level, i.e. uploading

data, assigning Tasks, editing Project

Settings, and viewing Project Overview

statistics & other user statistics.

Project Member

Can only annotate/review data (i.e.

Tasks) that are assigned to them. Cannot

view the activity of any other users.

Project Manager
Can manage Tasks and user permissions.

Cannot access Project settings.

Labelers are often first added to an Organization as Org Members, added to

relevant Projects as Project Members, and given access to the Label Stage by a

Project Admin.

Internal Reviewers are often first added to an Organization as Org Members and

then added to relevant Projects as Project Admins, which gives them Project-wide

Admin access.

External Reviewers are often first added to an Organization as Org Members,

added to relevant Projects as Project Members, and given access to any relevant

Review Stages by a Project Admin.

External Project Managers should be added to an Organization as Org Members

and added to relevant Projects as Project Managers.

Project-level Roles

Common Role Configurations

Inviting Your Team

The following instructions do not apply to Organizations who have implemented SSO.

You can view all the current members of your Organization inside the Team Tab on

the left sidebar.

To invite a team member to your Organization, navigate to the Team Page, click on

"Invite Member", enter their email address and select their Organization-level role

(i.e. either Org Admin or Org Member).

Click on "Send Invite" to issue an email invitation at the email address that you

indicated.

If you or a member of your team does not receive an email invitation, please check your

spam folder. If the invitation is not in Spam, you can accept the invitation directly from

the application by doing the following:

Navigate to https://app.redbrickai.com/createaccount and fill in the relevant fields,

being sure to use the email address to which the invitation was issued.

After logging in, you should be able to accept the invitation to your Organization.

Once a user has been invited to your Organization, you can invite specific users to

individual Projects and manage their Project-level permissions.

https://app.redbrickai.com/createaccount

Each team member's Project-level permissions can be managed under the Workforce

Tab of your Project Dashboard.

Assigning a Project Member to a particular Stage restricts their access to only those

Tasks that are currently in that specific Stage. This restriction applies to both

manual and automatic task assignment.

Please see the video below for a visual demonstration of how to invite a Project

Member to a Project and limit their access to a specific Stage.

Single Sign-on

RedBrick AI is proud to offer Single Sign-on (SSO) for Enterprise-level clients, which

allows your team to effortlessly access our platform using your trusted internal

credentials for a seamless end-user experience.

Implementing SSO for your Organization fundamentally alters the way that Users are

added to and sign into your Organization on RedBrick AI.

Please see more detailed summaries of both of these processes below.

If you'd like to implement SSO for your organization, please reach out to us at

support@redbrickai.com. We'll reach out to you directly to discuss the specific

requirements of your integration given your company's existing security architecture.

After SSO has been configured for your Organization (and assuming you have the

proper permissions), you can invite team members by first navigating to the Team

Page.

The "Invite Users" dialog will allow you to invite colleagues as either an Org Admin or

an Org Member, as well as display a URL slug. This URL slug is unique to your

Organization and is key to user sign-in, as detailed below.

Simply enter the email address of the user you would like to invite to your RedBrick

Organization, designate their privilege level and click "Send Invite".

Overview

Inviting Users to a RedBrick Organization with SSO

After an Org Admin has extended an invitation, the user should receive a message in

their email inbox containing a button that redirects the user to RedBrick AI to create

an account (or, if they have already created an account, to sign in to your RedBrick

Organization).

After clicking on the invitation link, the user will be prompted to confirm their

Organization's unique URL slug.

Account Creation with SSO

After clicking on "Sign up with SSO", the user will be redirected to an external identity

provider, where they will have to complete a successful login. If the login is

successful, a RedBrick AI account will be generated for the user.

After a RedBrick AI account has been generated for the user, a confirmation code will

be issued to their email address. Once the user enters that confirmation code into

the necessary field, they will be able to join their team's RedBrick Organization and

begin work.

Once a user has created an account on RedBrick AI and successfully joined an

Organization that has SSO enabled, they can easily sign in by clicking on "Sign in with

SSO" on the login page.

Signing In with SSO

After clicking on "Sign in with SSO", the user will be prompted to enter their

Organization's unique URL slug. Enter the slug and click on "Sign in with SSO" to

proceed to the RedBrick UI.

Importing Data

Preview Mode

RedBrick AI's Preview Mode allows users to see how their images, volumes, and

annotations are displayed within RedBrick AI's Annotation Tool without having to

create a Project or integrate a third-party Storage Method.

To visualize your data (and, optionally, your annotations) in Preview Mode:

1. Click on Preview Mode in the left hand toolbar of the Home Page;

2. Within Preview Mode, select the image(s) you would like to display or simply drag

and drop them into the corresponding left hand window;

3. (Optional) select the annotation file you would like to display or simply drag and

drop it into the corresponding right hand window;

4. Click on View Data;

5. Use the Manage Files button (top right hand corner) and Replace buttons (in the

dialog menu) to swap out new files as needed;

Uploading a spine MRI scan and annotations to Preview Mode

If you are uploading a segmentation file, Preview Mode will automatically map the

annotations and display them as unique Instances in the left hand toolbar.

Please note that images and volumes can be manipulated in Preview Mode just as

they would be in the standard Annotation Tool. The following functions represent a

non-exhaustive list of features available in Preview Mode:

If you are uploading a segmentation file that contains non-segmentation annotations

(e.g. length measurements, bounding boxes, etc.), the non-segmentation annotations

will not display in Preview Mode.

Windowing Settings

Thresholding Settings

MPR Layout

Command Bar (and commands such as "toggle Linear Pixel Interpolation", "toggle

permanent crosshairs", etc.)

Oblique Planes

Horizontal and Vertical Flipping

Viewport Maximization and Minimization;

...and more!

Direct Data Upload

The Direct Upload functionality allows users to upload their image data directly to

RedBrick AI’s servers. We recommend using Direct Upload if you’re working with a

small dataset or want to do some light experimentation with RedBrick’s toolset.

All image data that is directly uploaded to RedBrick AI’s servers will also be stored there.

If you’d rather not have your image data hosted on our servers, we recommend

integrating your storage.

RedBrick AI supports a variety of different image formats:

1. DICOM - .dcm, .ima, .dicom, .dicm

2. NIfTI - .nii, .nii.gz

3. Videos - .mp4, .mov, .avi

4. RGB Images - .png, .jpeg, .jpg, .bmp

5. NRRD - .nrrd

If you require additional support for a file format that is not present in this list, please

reach out to us at support@redbrickai.com.

First, open a project that will serve as the destination for your upload. Then, click on

Upload Data on the top-right of the dashboard.

1. Select the type of data you want to upload.

Please note that you can only upload one type of image data (DICOM, NIfTI,

etc.) at a time, and each data type has its own folder structure.

2. With DICOM & NIfTI volume data, you can also choose to group your data by

study. Selecting Group by Study allows you to upload multiple scans as a single

task. This is useful when you want to view or annotate multiple images (i.e. a full

study) at once.

https://docs.redbrickai.com/annotation/overview#how-tasks-work-with-dicom-annotation
https://docs.redbrickai.com/annotation/overview#how-tasks-work-with-dicom-annotation
https://docs.redbrickai.com/annotation/overview#how-tasks-work-with-dicom-annotation

Upload all instances of a DICOM series to a destination folder. If you’re only

uploading a single series, you can do so without designating a folder.

Individual NIfTI files are uploaded as separate tasks. If you’d like to group your tasks

by study, place all of the NIfTI files correlating to a specific task/study in a separate

folder.

Folder Structure

DICOM 3D Volume

NIfTI 3D Volume

Individual 2D images are uploaded as individual tasks. If you’d like to create a study

task with 2D images, please use your external storage or upload data using the CLI.

Individual 2D videos are uploaded as individual tasks. If you’d like to create a study

task with 2D videos, please use your external storage or upload data using the CLI.

All video frames in a folder are uploaded as a single task and sorted by file name.

Image 2D

Video Files

Video Frames

Import Cloud Data

RedBrick AI supports integration with a range of cloud providers, allowing you to

make use of its suite of tools without having to upload your data directly to our

servers.

While the steps and configurations required for uploading data from cloud storage

vary depending on your provider, the overall procedure remains the same.

1. Configure your cloud storage - AWS s3, Google Cloud Storage, Azure Blob Storage

2. Create and upload an Items List - your Items List communicates the location of

your data in your cloud storage to RedBrick AI's platform.

RedBrick AI currently supports the following external storage methods:

After opening the Storage tab in the lefthand sidebar, click on New Storage Method

to configure your new Storage Method for further use with RedBrick AI. After

inputting the required credentials, click on Create Storage to integrate your cloud

storage with RedBrick AI.

If you are using AWS, GCS, or Azure for third-party storage, you can also make use of

the Verify action to ensure that your Storage Method has been successfully

configured.

AWS S3 Buckets

Google Cloud Storage

Azure Blob Storage

Public - this includes data stored on your computer, as well as data stored on any

public server accessible via URL

Configuring Cloud Storage

If your Storage Method has been configured correctly, pasting a sample file path to

one of your visual assets into the field will display the following:

The Sample File Path field expects a file path starting at your bucket, not a full URL.

✖️ Don't Do: https://s3.region-1.amazonaws.com/redbrick-bucket/project-2/brain-

mri.dcm

✔️ Do: redbrick-bucket/project-2/brain-mri.dcm

Once your Storage Method has been integrated, you can move on to creating an

Items List.

Your Items List is a JSON file that points the RedBrick AI platform to the data in your

external storage and allows you to selectively import data points that can be

annotated as single units of work.

Jargon Alert! Single units of work (i.e. a single row on the Data Page) are referred to as

Tasks within RedBrick AI.

Your Items List can be uploaded to RedBrick from the Project Dashboard or by using

the SDK. Each entry in your Items List will be created as a separate Task, and you can

find detailed explanations of each key in our Format Reference.

The format of your Items List depends on both the type of cloud storage you have

integrated with RedBrick AI and the type of data you are uploading.

For solution-specific instructions regarding how to format your Items List with AWS

S3, GCS, Azure Blob Storage, or a Public source, please refer to the corresponding

configuration guide.

Once you have integrated your third-party Storage Method (where applicable) and

generated an Items Path, all that you have to do is click on Import Data within your

Project and upload the Items Path.

Items List

Overview

Creating & Configuring an Items List

Importing Data

https://docs.redbrickai.com/importing-data/import-cloud-data/creating-an-items-list#example-items-path

Congratulations! Now you're ready to begin working on RedBrick AI!

When using an external storage method with RedBrick AI, all of your data is

transferred directly from your storage method to your browser.

Clicking on Import Data will allow you to upload your Items List

Data Privacy

Your raw data will never be routed through RedBrick AI's servers, downloaded, or

duplicated (unless specifically requested for certain features - please review our

Privacy Policy).

RedBrick AI supports a variety of different image and volume formats:

Supported Data Formats

https://redbrickai.com/policies/privacy.pdf

1. DICOM - .dcm, .ima, .dicom, .dicm

2. NIfTI - .nii, .nii.gz

3. Videos - .mp4, .mov, .avi

4. RGB Images - .png, .jpeg, .jpg, .bmp

5. NRRD - .nrrd

If you require additional support for a file format that is not present in this list, please

reach out to us at support@redbrickai.com.

Configuring AWS s3

This section covers how to prepare your Amazon S3 storage to import data into the

RedBrick AI platform. After following the instructions in this section, you will be able

to create an Amazon S3 'storage method' on the RedBrick platform to connect your

S3 bucket to your RedBrick account.

The first step to preparing data storage on Amazon S3, is to sign up for an AWS

account on https://aws.amazon.com.

Skip creating a bucket if you want to use an existing bucket

Once you are logged in to your AWS account, head over to the Amazon S3 console.

Create a new bucket, give it a unique name (this will be needed later).

Select the region of the bucket - we recommend keeping it close to your physical

location for the best data transfer experience.

We recommend blocking all public access to your s3 bucket, and giving the

RedBrick AI interface access through IAM credentials.

You can leave all other settings as default.

After creating your S3 bucket, upload your images through the User Interface, or

use the AWS CLI for large amounts of data.

Signing Up for AWS

Create an S3 Bucket

S3 Bucket Settings

https://aws.amazon.com/

To ensure your data is private and secured, RedBrick uses pre-signed URL's to render

data in browsers. To allow RedBrick to use pre-signed URL's to serve data, you need

to define a CORS policy on the S3 bucket. Here is the AWS S3 documentation on

CORS.

To set the proper CORS policy, go to the Permissions tab in your S3 bucket. Under

Permissions select the CORS configuration and copy paste the following block of

code.

[
 {
 "AllowedHeaders": [
 "*"
],
 "AllowedMethods": [
 "PUT",
 "POST",
 "DELETE",
 "GET"
],
 "AllowedOrigins": [
 "*"
],
 "ExposeHeaders": [
 "x-amz-server-side-encryption",
 "x-amz-request-id",
 "x-amz-id-2"
],
 "MaxAgeSeconds": 3000
 }
]

https://docs.aws.amazon.com/AmazonS3/latest/dev/cors.html

If your S3 Bucket blocks public access to the data, you will have to create an IAM user

to allow RedBrick to securely access the data in your S3 bucket. AWS IAM enables you

to manage access to your AWS services. You can read about IAM in the AWS

documentation.

To create an IAM user from the AWS console, follow these steps:

1. Sign in to the AWS Management Console and open the IAM console

2. In the IAM console navigation pane, choose Users and then choose Add user.

1. Type the user name for the new user.

2. Select Programmatic Access

CORS Permissions on s3 bucket console

Click on Attach existing policies directly

Access and Secret Keys

Add User

Permissions

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

If your bucket will be used as an annotation storage bucket, you need to add PUT object

access as well.

Granular Permissions

You can configure your S3 bucket to give RedBrick AI access to particular data points

inside your s3 bucket by modifying the "Resource" section in the file above.

Create a new policy

Paste the following block of JSON inside the JSON tab. Remember to replace

<your_s3_bucket_name_here> with the name of the S3 bucket that has your data.

You can modify the Resource path for added security or specificity.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RedBrickLabelingReadOnly",
 "Effect": "Allow",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::<your_s3_bucket_name_here>/*"
 }
]
}

Review your policy and create it.

Head back to your IAM user creation and attach the policy you just created.

Create the user and download Access and Secret key .csv

Store the CSV file with your keys carefully.

Create the user

Items Path

Once you've created your AWS Storage method on RedBrick AI, you have to upload

an items list to your projects to import specific datapoints. Please have a look at the

items list documentation for a overview of the format for the JSON file.

For data stored in an AWS s3 bucket, the items path needs to be formatted as

follows:

Where root-folder is inside the AWS s3 bucket storage method.

If you don't have a standard naming convention for your files inside your s3 bucket,

or you're not sure which files are in the s3 bucket, you can use the AWS CLI to

enumerate a list of all the objects inside a bucket. Using this list, you can

programmatically generate an items list.

Have a look at the AWS documentation for installing the CLI. For mac users, running

brew install awscli is the easiest way to install the AWS CLI.

Once you have the AWS CLI installed, you need to configure the cli with your AWS

root account Access Key and Secret Key to give permissions to AWS CLI. After

installing AWS CLI, do the following.

After filling out your keys, you can leave the last two fields empty.

"root-folder/sub-folder/datapoint.dcm"

$ aws configure
AWS Access Key ID [None]: <your_access_key>
AWS Secret Access Key [None]: <your_secret_key>
Default region name [None]:
Default output format [None]:

Programmatically Generate Items List For S3

Installing and Configuring the AWS CLI

https://docs.aws.amazon.com/cli/latest/userguide/install-cliv2.html

Now that your AWS CLI is configured, you can list out the objects inside your s3

bucket by running the following command.

After listing out all the images inside the s3 bucket (or a folder in the bucket), you can

save the output to a txt file and write a simple script to convert that output into a

JSON file in the format of the Items List covered above.

$ aws s3 ls s3://<your_bucket_name>

Configuring Azure Blob

If you already have a storage account, skip this section, and head directly to the next

section.

An Azure storage account contains all of your Azure Storage data objects, you can

find the official documentation here.

1. Sign in to your Azure portal.

2. On the left portal menu, select Storage Accounts to list all of your storage

accounts.

3. On the Storage Accounts page, click create.

You need to fill out the required fields under the basics tab, please refer the table

below as a quick guide.

Section Field Description

Project details Subscription
Select the subscription for

the new storage account.

Project details Resource group

Create a new resource group for this storage

account, or select an existing one. For

more information, see Resource groups.

Instance details
Storage

account name
Choose a unique name for your storage account.

Instance details Region

Select the appropriate region for your

storage account. For more information, see

Regions and Availability Zones in Azure.

Create a Storage Account

Basics Tab

https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create?toc=%2Fazure%2Fstorage%2Fblobs%2Ftoc.json&tabs=azure-portal
https://portal.azure.com/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management/overview#resource-groups
https://docs.microsoft.com/en-us/azure/availability-zones/az-overview

To configure other advanced settings on your storage account, head to advanced

tabs, otherwise you can continue with default settings.

When you navigate to the Review + create tab, Azure runs validation on the storage

account settings that you have chosen. If validation passes, you can proceed to

create the storage account.

If you already have a container, please skip to the next section.

Containers organizes a set of blobs, your Azure storage account can have an

unlimited number of containers. To create a container, head to your Azure portal:

1. Head to the Storage Accounts page from the left portal menu, and select the

Storage Account you want to create your container in.

2. On the left menu of the Storage Account, scroll to the Data Storage section, then

select Containers.

3. Create a container by clicking on the + Container button.

4. Type in a name for the container, and set the level of public access to the

container (we recommend Private)

Section Field Description

Instance details Performance
Select your desired level of performance,

or choose the default option.

Instance details Redundancy Select your desired redundancy configuration.

Other Settings

Review + create

Create a Container

1. Navigate to your Storage Account on your Azure portal.

2. In the left menu of the Storage Account, scroll to Security + Networking, and

select Access Keys.

3. On the Access Keys page, click on Show keys at the top, and copy one of the

connection strings

Head over to your RedBrick AI Account:

1. Click on the Storage Method tab on the left sidebar, and Create New Storage

Method.

2. In the creation dialog, select Azure Blob as the storage type and enter your

connection string, and storage account name.

To ensure your data is private and secured, RedBrick uses signed URL's to render

data in browsers. To allow RedBrick to use signed URL's to serve data, you need to

enable CORS on the Storage Account. This can be done from your Storage Account -

> Settings -> Resource Sharing (CORS). We recommend the following CORS policy:

Get your Connection String

Create a RedBrick Storage Method

Enable CORS on your Storage Account

Once you've added your Azure storage method on RedBrick AI, you can verify the

connection by doing the following:

1. First upload an image to your container within your azure storage account (e.g.

image.png)

2. Head to the Storage Method page on RedBrick AI, and click on the verify button

of the storage method you just created.

3. Paste the unique path of your blob, which will be in the following format:

container_name/blob_path . So if you uploaded image.png within the sub-

folder images in your container image-container , your path would be

image-container/images/image.png .

4. If the connection was successful, you should see the image appear once you

verify.

Once you've created your Azure Storage method on RedBrick AI, you have to upload

an items list to your projects to import specific datapoints. Please have a look at the

items list documentation for a overview of the format for the JSON file.

For data stored in an Azure container, the items path needs to be formatted as

follows:

Where container-name is inside the Storage Account.

You can also used a "Shared Access Signature" URL for enabling access to your

bucket through RedBrick AI.

"container-name/root-folder/sub-folder/image.png"

Verify your Azure connection

Items Path

Shared Access Signature

When you want to upload data that is in a connected storage method to the RedBrick

AI platform you will do this as an Items List. Depending on which level of permissions

you want to restrict access to with your SAS URL, you will need to create your "items"

differently. These items tell RedBrick AI where to find your data.

Example access configuration

Expiry should be until the time you want to have access to your data through

RedBrick AI, with this time expires you will lose access to your data through

RedBrick AI and will have to update the configuration. We recommend giving this

at least a few years, you can always cancel the access later.

IP address (optional) could be the user's permanent network address range

Only Read permissions are necessary

Permissions Sample item

Connection string and Service level SAS: "container/folder/item.jpg"

Upload Items

After creating your storage method integration, we recommend you test the way you

generate items using the "verify" feature. This will perform pre-signing and check if

your browser is able to fetch the image from your bucket.

Permissions Sample item

Container level SAS: "folder/item.jpg"

Blob level SAS: (not recommended) " "

Configuring GCS

This section covers how to prepare your GCS storage to import data into the

RedBrick AI platform. After following the instructions in this section, you will be able

to create an GCS 'storage method' on the RedBrick platform to connect your GCS

bucket to your RedBrick account.

The first step to preparing data storage on GCP is to create a account on GCP.

Once you have your GCP account and a project within your account, a bucket and

upload your data within the bucket either through the UI or CLI. You can leave all the

settings during creation as the default. After creating your bucket, upload your data

into the bucket.

A service account is a special kind of account used by an application or a virtual

machine (VM) instance, not a person. Applications use service accounts to make

authorized API calls, authorized as either the service account itself, or as Google

Workspace or Cloud Identity users through domain-wide delegation.

1. In the Cloud Console, go to the Service Accounts page.

2. Select the appropriate project.

3. Click Create service account.

4. Enter a service account name to display in the Cloud Console.

For eg, gcs-blob-reader

Signing up for Google Cloud Platform

Create a bucket within a project

Create a Service Account

https://cloud.google.com/
https://console.cloud.google.com/iam-admin/serviceaccounts

The Cloud Console generates a service account ID based on this name. Edit the ID

if necessary. You cannot change the ID later.

5. Optional: Enter a description of the service account.

6. Click Create and continue to the next step.

7. Add the following two IAM roles to grant to the service account on the project.

1. Storage Object Viewer (For reading the blobs from the GCS bucket)

2. Service Account Token Creator (For pre-signing the blobs)

3. If your bucket will be used as an annotation storage bucket, you need to give

RedBrick AI access to PUT files as well.

8. Once done adding roles, click Continue.

9. Click Done to finish creating the service account.

10. Note down the email id of the newly created service account.

1. In the Cloud Console, go to the Bucket Browser page.

2. Click on the more actions button (three dots) at the right of the necessary bucket.

3. Click on Edit Bucket Permission .

4. Click on ADD PRINCIPAL .

5. Add the email address of the service account created in the above step (step 10).

6. Add following two roles

Storage Legacy Bucket Reader

Steps to give Bucket access to Service
Account

https://console.cloud.google.com/storage/browser

Storage Legacy Object Reader

7. Click on save.

To use a service account from outside of Google Cloud, such as on other platforms or

on-premises, you must first establish the identity of the service account.

Public/private key pairs provide a secure way of accomplishing this goal. When you

create a service account key, the public portion is stored on Google Cloud, while the

private portion is available only to you.

1. In the Cloud Console, go to the Service Accounts page.

2. Click the email address of the service account that we created in the above step.

3. Click the Keys tab.

4. Click the Add key drop-down menu, then select Create new key.

5. Select JSON as the Key type and click Create.

6. Clicking Create downloads a service account key file. After you download the key

file, you cannot download it again.

The downloaded key has the following format, where private-key is the private

portion of the public/private key pair:

{
 "type": "service_account",
 "project_id": "project-id",
 "private_key_id": "key-id",
 "private_key": "-----BEGIN PRIVATE KEY-----\nprivate-key\n-----END PRIVA
 "client_email": "service-account-email",
 "client_id": "client-id",
 "auth_uri": "https://accounts.google.com/o/oauth2/auth",
 "token_uri": "https://accounts.google.com/o/oauth2/token",
 "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/cer
 "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x5
}

Steps to create Service Account Key (JSON)

https://console.cloud.google.com/iam-admin/serviceaccounts

Make sure to store the key file securely, because it can be used to authenticate as

your service account. You can move and rename this file however you would like.

1. In the Cloud Console, go to the API Library page.

2. Select the appropriate project.

3. Search for Identity and Access Management (IAM) API and click on it.

4. Click on Enable

Use this downloaded service account JSON key to create GCS store in the

Redbrick app.

The final step in preparing your GCS bucket for use with RedBrick AI is enabling CORS

on the bucket. Cross-Origin Resource Sharing allows the RedBrick AI application (with

the domain https://app.redbrickai.com/) to make requests to your bucket.

Please visit the following Google Cloud documentation for enabling CORS on a

bucket - https://cloud.google.com/storage/docs/configuring-cors.

You will want to use the following CORS JSON configuration file:

[
 {
 "origin": ["https://app.redbrickai.com"],
 "method": ["GET"],
 "responseHeader": ["Content-Type"],
 "maxAgeSeconds": 3600
 }
]

Enable the Identity and Access Management (IAM) API

Configuring CORS

https://console.cloud.google.com/project/_/apis/library?_ga=2.193485741.1059200516.1617769981-1501397432.1596651361
https://cloud.google.com/storage/docs/configuring-cors

If you're also storing your annotations in your GCS bucket, be sure to add "PUT" to your

method configuration array (e.g. " ["GET", "PUT"] ").

Once you've created your Google Storage method on RedBrick AI, you have to upload

an items list to your projects to import specific datapoints. Please have a look at the

items list documentation for an overview of the format for the JSON file.

For data stored in an GCS bucket, the items path needs to be formatted as follows:

Where root-folder is inside the GCS bucket storage method.

"root-folder/sub-folder/datapoint.dcm"

Items Path

Configuring AltaDB

This section covers how to prepare your AltaDB storage to import data into the

RedBrick AI platform. After following the instructions in this section, you will be able

to create an AltaDB 'storage method' and import Data into RedBrick AI.

The first step is to create an account on AltaDB.

1. Create a dataset.

2. Click on Import data, and drag & drop your DICOM files into the data importer.

AltaDB v0.0 only supports direct upload through the browser.

3. Once the upload is complete, AltaDB will index the DICOM headers and re-

compress the DICOM pixel data with state-of-the-art compression. This process

will take a few minutes for 10 series.

4. You can monitor the status of your imports inside the "Import" tab.

Processing an import will take several minutes to completely index all DICOM headers

and re-compress pixel data with state-of-the-art compression

You can preview your images by clicking on the thumbnail. The simple viewer offers a

view of the imaging axis and supports a few key functions:

1. Change slice: Mouse scroll.

2. Windowing: Right-click drag.

3. Zoom: Left-click drag.

4. Pan: Middle mouse drag.

Signing up on AltaDB Platform

Dataset Creation & Importing Data

Viewing the Data

https://docs.altadb.com/altadb
https://share.redbrickai.com/PTBs1H5P

To Create a new API key, Go to API keys in the left menu sidebar and click on "New

API key" button on the top right corner. Once created, note down the "access" and

"secret" keys.

Integrating with RedBrick AI

Create API key on AltaDB

In your AltaDB dataset, select the series you want to import into RedBrick AI and click

on the "Download RedBrick AI JSON button".

Next step is to create an AltaDB storage method in your RedBrick AI account. You will

need your AltaDB Access and Secret keys to setup this storage method.

Download the JSON from AltaDB

Create AltaDB storage method on RedBrick AI

To import data into RedBrick AI, Upload the JSON file you downloaded from AltaDB

and Select AltaDB from the dropdown in the external storage method.

Importing Data into RedBrick AI

Creating an Items List

An Items List is a JSON file that points the RedBrick AI platform to the data in your

external storage and allows you to selectively import data points. The format of your

Items List depends on both the type of cloud storage you have integrated with

RedBrick AI and the type of data you are uploading.

For solution-specific instructions regarding how to format your Items List with AWS

S3, GCS, or Azure Blob Storage, please refer to the corresponding configuration

guide.

It's important to note that each entry in your Items List will be created as a

separate Task, which can then be annotated as a single unit. You can find detailed

explanations of each key in our Format Reference.

After creating your JSON Items List, you can upload it from RedBrick AI's Project

Dashboard or by using the SDK.

Overview

https://docs.redbrickai.com/python-sdk/reference/annotation-format#tasks-json

Select a Storage Method and upload your Items List

Please note that there is no need to create an Items List when using Direct Upload.

The example below contains fields relevant to image-only uploads.

The items entry enumerates the file paths referencing your data in your cloud storage.

Depending on the storage method, this file path may be relative to your bucket name or

the root folder in your bucket. Please reference the relevant documentation to verify

the format of the Items List for each of RedBrick AI’s supported storage methods:

type Items = Task[];

interface Task {
 // A unique, user-defined ID
 // After import, you can search tasks using this field.
 name: string;

 // You can upload a single series, or an entire study (array of series
 series: Series[];
}

interface Series {
 // Filepath/URL's of all the instances in a single series.
 items: string[] | string;
 name: string;
}

AWS S3 Items List

Azure Blob Items List

GCS Items List

Example Items Lists

Example Item Lists by Format

3D DICOM

This Items List will upload a single Task containing two Series.

This Items List will upload two Tasks, each containing a single Series.

3D DICOM Study

[
 {
 "name": "study001",
 "series": [
 {
 "items": [
 "study001/series001/001.dcm",
 "study001/series001/002.dcm",
 "study001/series001/003.dcm"
]
 },
 {
 "items": [
 "study001/series002/001.dcm",
 "study001/series002/002.dcm",
 "study001/series002/003.dcm"
]
 }
]
 }
]

3D DICOM Series

Please note that items must be a single string for NIfTI uploads.

This Items List will upload a single Task containing two Series.

[
 {
 "name": "series001",
 "series": [
 {
 "items": [
 "series001/001.dcm",
 "series001/002.dcm",
 "series001/003.dcm"
]
 }
]
 },
 {
 "name": "series002",
 "series": [
 {
 "items": [
 "series002/001.dcm",
 "series002/002.dcm",
 "series002/003.dcm"
]
 }
]
 }
]

NIfTI Series

NIfTI

This Items List will upload two Tasks, each containing one Series.

[
 {
 "name": "study001",
 "series": [
 {
 "items": "series001.nii"
 },
 {
 "items": "series002.nii"
 }
]
 }
]

NIfTI Study

[
 {
 "name": "series1",
 "series": [
 {
 "items": "series001.nii"
 }
]
 },
 {
 "name": "series2",
 "series": [
 {
 "items": "series002.nii"
 }
]
 }
]

2D Image Study

2D Image

This Items List will upload a single Task containing two images.

This Items List will upload two Tasks, each containing a single image.

[
 {
 "name": "patient1",
 "series": [
 {
 "items": "scan1.dcm"
 },
 {
 "items": "scan2.dcm"
 }
]
 }
]

2D Image Series

[
 {
 "name": "patient1",
 "series": [
 {
 "items": "scan.dcm"
 }
]
 },
 {
 "name": "patient2",
 "series": [
 {
 "items": "scan.dcm"
 }
]
 }
]

Video Frames

The frames must be in the correct order in the items array.

This Items List will upload a single Task with two videos, where each video

contains three frames.

This Items List will upload two Tasks, each containing a single video with three

frames.

Video Frames Study

[
 {
 "name": "study001",
 "series": [
 {
 "items": [
 "study001/series001/001.png",
 "study001/series001/002.png",
 "study001/series001/003.png"
]
 },
 {
 "items": [
 "study001/series002/001.png",
 "study001/series002/002.png",
 "study001/series002/003.png"
]
 }
]
 }
]

Video Frames Series

In some use cases, you can rely on RedBrick AI to split your Study into a list of Series.

This can be especially useful if you do not follow a strict naming convention for your

studies.

You can upload a single Series or multiple Series per task using the simplified Study-

Level format.

Please note that any Tasks uploaded using this format will only be automatically split

after a user opens the Task in the Annotation Tool.

[
 {
 "name": "video1",
 "series": [
 {
 "items": [
 "001.png",
 "002.png",
 "003.png"
]
 }
]
 },
 {
 "name": "video2",
 "series": [
 {
 "items": [
 "001.png",
 "002.png",
 "003.png"
]
 }
]
 }
]

Automatically Split Study

The Items List below will create a single task containing one or more series.

RedBrick AI will parse the DICOM files on the client side and automatically split

this list of .dcm into one or more series (depending on the DICOM headers).

The Items List below will create a single task containing exactly two series.

RedBrick AI will assume each of the NIfTI files in the items array is an individual

series.

type Items = Task[];

interface Task {
 // A unique, user-defined ID
 // After import, you can search tasks using this field.
 name: String;

 // You can upload a single series, or an entire study (array of .dcm fil
 // The items array will automatically be split into individual series.
 items: String[]
}

DICOM

[
 {
 "name": "study001",
 "items": [
 "bbfa85feb36f.dcm",
 "d4a49634cd4c.dcm",
 "eed2e7462ba5.dcm",
 "45455dd0e45b.dcm"
]
 }
]

NIfTI

This format is the same as the Legacy Items List format (pre-July 2022)

[
 {
 "name": "study001",
 "items": [
 "bbfa85feb36f.nii.gz",
 "d4a49634cd4c.nii"
]
 }
]

Troubleshooting

This section covers troubleshooting issues with data loading in the Annotation Tool. If

there is an error in loading your data, you will encounter something very similar to

the following:

Data can fail to load for a variety of reasons, from network issues to invalid file

pathing to incompatible image headers and more.

Let's walk through some basic steps using the example above that will help you

determine how to best troubleshoot an error.

1. Check for specific information - you may have a specific error message under

Failed to load image, such as in the example above - "Request failed with status

code 404". The error messages that RedBrick AI generates for you can provide

valuable insight into why your data is not loading.

A typical 404 error

General Troubleshooting Walkthrough with
Example

In this example, a 404 error, or a "Not Found" error, likely means you have an issue

with your external storage integration or internet connection.

2. Use the context you have - RedBrick AI displays a 404 error when you attempt to

open an image/volume that RedBrick AI can't find, which typically implies that:

1. There is an issue with your file path, i.e. you're asking RedBrick to open

something that doesn't actually exist in that specific location;

2. There is an issue with the image/volume itself, i.e. you're asking RedBrick to

access a file that may have been renamed, moved, deleted, etc.;

3. There is an issue with your network, i.e. your internet connection was

disrupted or failed while you were trying to load the image/volume;

4. There is an issue with your integration, i.e. there's something wrong with the

configuration of your external storage.

Your admins can verify the validity of any Storage Method on the Storage Page.

2. Escalate appropriately - in the case of our 404 error, it may be best to reach out

to a Team Lead to verify that all files were correctly uploaded to your Project.

If you don't have a specific error message to work with or would simply like RedBrick

AI's Support Team to investigate, we're always standing by to help!

You can either email us at support@redbrickai.com or click on the Help Button, and

then on Email support.

Contacting RedBrick AI Support

https://docs.redbrickai.com/importing-data/import-cloud-data#configuring-cloud-storage

When emailing RedBrick AI's Support Team, please include as much context as you

can so that we can get to work right away! Some things that will help often include:

1. The Task URL - the URL of the Task that is failing to load. This URL contains the ID

of both the Task itself and the Project that the Task is located in;

2. The Error - A screenshot of the error message (or a copy/pasted version of the

content of the error message);

3. Additional Context (for technical users)- screenshots or logs from the Console

or Network tabs of Developer Tools, where applicable;

If you'd simply prefer to continue work on other Tasks, you have several options.

Raise Issue - if you'd like to inform your Admin of an issue within RedBrick AI, you

can click on the Raise Issue button. This will remove the Task from your Labeling

Queue, preventing it from appearing over and over again while you work. You can

Common Information to Include in an Email to RBAI Support

Continuing Work

learn more about raising an Issue here. Once you raise an Issue, you will

automatically be presented with the next Task in your Labeling Queue;

If you don't want to raise an Issue, you can simply navigate to another Task in your

queue by either:

1. clicking on another Task at the bottom of the error screen, or

2. backing out of the Annotation Tool and selecting another Task.

If you're using an external Storage Method and can see URLs listed under the "Failed

to load these URLs" message, try opening the link in your browser.

If the browser loads a screen with an error message, there is likely an issue with

your Storage Method integration (possibly your bucket name or access keys).

If you are seeing a data file is being downloaded but not displayed, it's likely that your

team has not not enabled CORS on your storage method. If CORS is not enabled

on your storage method, your browser will not be able to load the image (as it comes

from a different origin).

Other Situational Troubleshooting Tips

Error Message: Failed to load these URLs

CORS Configuration Error

https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS

Projects

Get Started with a Project

Please see the following micro-tutorial for a visual walkthrough of how to create a

Project in RedBrick AI.

Microtutorial - Creating a Project and Defining…

2 min2 min 82 views82 views

1

Creating a Project: Step by Step

https://www.loom.com/share/9f66a90fc87c43e585072f7b645cb259?source=embed_watch_on_loom_cta
https://www.loom.com/share/9f66a90fc87c43e585072f7b645cb259?source=embed_watch_on_loom_cta
https://www.loom.com/share/9f66a90fc87c43e585072f7b645cb259?source=embed_watch_on_loom_cta
https://www.loom.com/share/9f66a90fc87c43e585072f7b645cb259?source=embed_watch_on_loom_cta
https://www.loom.com/share/9f66a90fc87c43e585072f7b645cb259?source=embed_watch_on_loom_cta

To create a new Project, press the Create Project button on the Projects page;

Each Project has a unique name that can be changed at any time within Project

Settings;

Taxonomies are stored at the Organization level, which allows you to reuse a single

labeling Taxonomy across Projects.

Selecting a Taxonomy for a Project is a permanent choice that cannot be undone.

However, you can edit your Taxonomy after using it in a Project.

Project workflows allow you to explicitly define a series of annotation and review

stages in your project.

You can also configure the number of review stages and the review percentage

(i.e. randomly select a subset of data for pseudo-random review) in your workflow.

Once your data has successfully passed through all stages of your workflow, it will

reach the Ground Truth Stage.

A common workflow included a single Label Stage followed by two Review Stages

where different sets of reviewers validate the annotations performed.

When a reviewer rejects a Task in a Review Stage, it is sent back to the Label Stage and

automatically assigned to the same Labeler who annotated it the first time.

Create project page

Step 1: Specify a Unique Project Name

Step 2: Select the Taxonomy for your Project

Step 3: Define your Project Workflow

The number of Review Stages cannot be modified after a workflow has been created.

You can, however, disable a Review Stage by setting its Review Percentage to 0% in your

Project Settings.

The Pre-review stage enables you to examine tasks for quality control or other

purposes before they proceed to the labeling stage.

To enable the pre-review stage for your project, follow these steps:

Begin by creating a new project.

Turn on the pre-review stage by clicking the toggle button.

Once activated, the pre-review stage will be added to the workflow.

After all the stages are added, click the "Create Project" button.

Navigate to the "Data" tab, and begin reviewing tasks. You can then either accept

or reject them as needed.

Pre-review and Pre-Label stage

Pre-review stage

The pre-label stage enables you to label and classify tasks before they are moved to

the labeling stage. This stage simplifies the process, especially for complex projects.

Pre-Label stage

To enable the pre-label stage for your project, follow these steps:

Once you have successfully created a Project, you will most likely want to perform

the following actions to add collaborators and data and modify Project settings.

By default, all Org Admins have comprehensive access to all Projects. As with any

elevated role, we recommend taking care when designating fellow team members as

Begin by creating a new project.

Turn on the pre-label stage by clicking the toggle button.

Once activated, the pre-label stage will be added to the workflow.

After all the stages are added, click the "Create Project" button.

Navigate to the "Data" tab, and begin labelling the tasks.

Additional Project Setup

Adding Labelers to your Project

Org Admins.

Generally speaking, it's advisable to add Labelers and Reviewers to your Organization

as Org Members. This grants them access to your Organization on the RedBrick AI

Web Application, but limits their access and permissions.

Org Admins have granular control over the Project-level access of all Org Members.

In order to add Labelers or Reviews to individual Projects, we recommend the

following:

1. On the Team Page, invite the Labeler/Reviewer as an Org Member (MEMBER).

2. After the Labeler/Reviewer accepts their invitation and creates an account,

navigate to the Project you'd like to add them to and open the Workforce Tab.

From there, you can invite the Labeler/Reviewer to the Project as either a Project

Admin or Project Member. Please note that if your Labeler/Reviewer is a

Project Admin, they will have access to all Stages of a Project, as well as the

Project Settings.

3. If your Labeler/Reviewer is a Project Member, you can regulate their access to

various Stages limited based on your workflow's needs or regulatory

requirements.

For a more in-depth breakdown of the permissions and access privileges associated

with each role, please consult the documentation below.

Organization and Project Roles

You can upload data to a Project either through the UI or CLI/SDK. Most teams tend

to integrate external storage and host their own data, however, you can also directly

upload data to RedBrick AI servers.

If you'd like to upload annotation files alongside your images and/or volumes, you

must use our CLI/SDK.

Uploading Data

Importing Data & Annotations

Once you have uploaded data to your Project, RedBrick AI will begin automatically

assigning Tasks to the users in your Project. You can learn more about the specifics

of task assignment by referencing the documentation below.

Task Assignment

Assigning Tasks

Task Assignment

A Task is a unit of work that moves through your project pipeline in RedBrick AI.

Tasks can consist of anything - a single image, series, or entire study, and your

Labeler works with one Task at a time while annotating.

For example, if you'd like your Labelers to view & annotate an entire MRI study

comprised of 4 series together, you should upload the 4 series together as a single

Task (see "Multi-series Task" below):

Please see our data import documentation for a more comprehensive overview of

how to structure your data imports.

RedBrick AI allows you to delegate work among your team using either automatic or

manual task assignment.

Several examples of valid Tasks

What is a Task?

Task Assignment in RedBrick AI

Any Project Admin or Member with relevant permissions can view a Task on RedBrick

AI.

Automatic Task Assignment is enabled by default upon Project creation. The

automatic assignment protocol is a first-come-first-serve system, i.e. it assigns the

oldest Tasks to the first annotators that request new Tasks.

Labelers can request new Tasks by clicking on the "Label/Review" buttons on the

Project Dashboard.

You can disable Automatic Task Assignment in Project Settings -> General Settings.

Admins can also override the automatic assignment protocol and manually assign

Tasks to users from the Data Page.

RedBrick AI will not automatically re-assign Tasks that have been manually assigned.

Automatic Task Assignment

Manual Assignment

You can programmatically assign tasks by prescribing the assignment during data

upload as part of your Items List or using the assign_tasks() method of our SDK.

You can use the preAssign field in the to assign a Task you are uploading to a

specific user(s) at each Stage.

For example, the snippet below will assign study_001 to annotator@email.com in

the Label Stage. Once the annotation is complete, the Task will be queued in

Review_1 and reviewer@email.com will be assigned as the Reviewer.

Always double check that your Stage Names (i.e., Label, Review_1, etc.) and user emails

have been input correctly.

Also, when preassigning Tasks, all emails must be associated with an existing Project

Member.

[
 {
 "name": "study_001",
 "preAssign": {
 "Label": "annotator@email.com",
 "Review_1": "reviewer@email.com"
 },
 "series": [
 {
 "items": "ImageFile.extension",
 }
]
 }
]

Programmatically Assigning Tasks

Assigning Tasks on Upload

Assigning Tasks after Upload

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.labeling.Labeling.assign_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.labeling.Labeling.assign_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.labeling.Labeling.assign_tasks

You can use the assign_tasks() method to designate task assignment using the SDK.

Please see our SDK Documentation for further details.

Once a Task is assigned to a user, it is added to their Labeling Queue. You can view

your labeling queue in two ways.

1. From the Data Page:

On the Data Page, you can filter existing Tasks by Queued for Labeling/Review

and then by Tasks assigned to you.

2. In the Annotation Tool:

The Labeling Queue can be expanded/retracted by clicking on the corresponding

button in the top bar of the Annotation Tool.

While in your Queue, a Task can be in a few different states depending on the status

of the annotation:

1. Assigned

Tasks that you have not worked on yet will be displayed as Assigned.

2. Saved

Once you save your in-progress annotation (either manually or through auto-

save), the Task will show as saved.

3. Pending Finalization

Once you are done with the annotation, you can Submit a Draft. All drafts that

have been submitted will still be in your Labeling Queue pending finalization.

You must finalize the draft to complete it and send it to the next stage of the

workflow.

4. Skipped

If you encounter a Task that you would like to complete at a later time, you can

skip it to send it to the end of your Labeling Queue.

The diagram below is a visual guide to the flows associated with completing Tasks in

your Labeling Queue, including associated actions and Task states.

Labeling Queue

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.labeling.Labeling.assign_tasks
https://app.tango.us/app/workflow/Labeling-Queue-on-Data-Dashboard-b79b4d8562d34bc6a33d6cce0aa4476e
https://app.tango.us/app/workflow/View-Labeling-Queue-in-Tool-17a013c7a161415c85cba3369344cae2

RedBrick AI allows you to designate specific Tasks as prioritized, which elevates

them to the top of your Labeling Queue.

Task Priority is reflected in the Web Application in the following ways:

Guide to submitting Tasks in your Labeling Queue

Two Tasks with priority scores

Task Prioritization

1. Task Priority is visible in the Data Page when sorting by Queued for

Labeling/Review or Recently Labeled/Reviewed - this logic applies to all Stages

except for Ground Truth.

2. Task Priority will persist throughout Raising an Issue and/or Rejecting a Task at

any Stage.

3. Task Priority will be visible in the Annotation Tool when viewing the Queue

4. Tasks that are Assigned and Prioritized will occupy a higher position in the queue

than Tasks that are Unassigned and Prioritized.

As seen in the snippet below, you can use the update_tasks_priority() method to

designate a float between 0 and 1 that reflects the priority of a given Task (where 1 is

the highest priority and 0 is the lowest).

For the truly brave, our Prioritization API supports up to the billionth place for floats.

tasks =
 [
 {
 # High Priority Task
 "taskId": "2716057",
 "priority": 0.95
 },
 {
 # Mid Priority Task
 "taskId": "BU221729",
 "priority": 0.50
 },
 {
 # Low Priority Task
 "taskId": "8675309",
 "priority": 0.32
 }
]

project.labeling.update_tasks_priority(
 stage_name="Label",
 tasks=tasks
)

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#labeling
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#labeling
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#labeling

Taxonomies

Taxonomies allow you to define the structures that you'd like to annotate in your

project and apply them to your data quickly and accurately. They ensure all

annotations follow a structured schema which is automatically imported to the left

hand sidebar of RedBrick AI's Annotation Tool.

Object Labels are the structures that your team will annotate on RedBrick AI.

When creating your Taxonomy, you must define a Label Type (e.g. "Segmentation")

and a Name (e.g. "Edema") for each Object Label.

Object Label Types

RedBrick AI supports the following Object Label Types:

Attributes allow you to add a deeper level of classification to your Object Labels.

Attributes are commonly used to collect more information about a particular object

Object Label Type 2D Image 3D Image 2D Video

Segmentation ✅ ✅

Landmarks ✅ ✅ ✅

Angle Measurement ✅ ✅

Length Measurement ✅ ✅

Bounding Box ✅ ✅ ✅

Ellipse ✅ ✅

Polygon ✅ ✅

Polyline ✅ ✅

Cuboid ✅

Object Label Attributes

(e.g. "True/False" for an Object titled "tumor malignancy"). RedBrick AI offers the

following Attribute Types:

Classifications are data attributes that can be affixed to studies, individual Series, or

individual video frames.

Just like Object Label Attributes, Classifications can be Booleans, Single Selects,

Multi-selects, or Text fields, and there is no limit to the number of Classifications

you can have in your Taxonomy.

Study-Level Classifications are a classification for an entire Task (e.g. an MRI study

consisting of 4 Series).

Series-Level Classifications are applied to a single series (e.g. the T1 sequence from

an MRI study).

Instance-Level Classifications are applied to a single frame of a video and are only

available for 2D video formats.

Attribute Type Description

Boolean A checkbox that can be either True or False

Select
A dropdown that can be a single

value from a list of predefined values

Multi-select
A dropdown that can have multiple

values from a list of predefined values

Textfield A text input that can record free form text

Classification Type 2D Image 3D Image 2D Video

Study ✅ ✅ ✅

Series ✅ ✅ ✅

Classifications

Taxonomies are created and stored at the Organization level, which allows you to

use a single Taxonomy for several Projects.

To create a new Taxonomy in the UI, navigate to the Taxonomies page in the left

hand side bar of the RedBrick web app and click on Create Taxonomy.

Taxonomies can also be created using the create_taxonomy() SDK method.

All Taxonomies must contain at least one Object Label or Classification in order to be

successfully created.

Taxonomies can be modified on the Taxonomies page of the UI at any time.

Alternatively, you can use the update_taxonomy() SDK method to modify a

Taxonomy outside of the UI. Please note the following about modifying existing

Taxonomies:

1. the update_taxonomy() method overwrites the current Taxonomy in its entirety;

2. If you delete an Object Category, Attribute, or Classification from your Taxonomy,

all existing associated annotations will need to be updated;

3. Taxonomies that are being used in Projects cannot be deleted;

Classification Type 2D Image 3D Image 2D Video

Instance ✅

Creating Taxonomies

Modifying Taxonomies

Nesting Taxonomy Elements

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.organization.RBOrganization.create_taxonomy
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.organization.RBOrganization.create_taxonomy
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.organization.RBOrganization.create_taxonomy
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.organization.RBOrganization.update_taxonomy
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.organization.RBOrganization.update_taxonomy
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.organization.RBOrganization.update_taxonomy

Taxonomies now support the nesting of Object Labels, Study-Level and Series-Level

Classifications both in the UI and via the RedBrick AI Python SDK.

By adding the parents attribute to your Taxonomy, you can create and/or designate

Parent Tiers for a given Object Label.

In the Taxonomies page, simply click on Add Folder and give your folder a name.

You can then easily drag and drop your Objects Labels or Classifications into your

folder.

Nested Object Labels in the Annotation Tool

Nested Spine Segmentations

9 sec9 sec 81 views81 views

0

Nesting Object Labels in the UI

Nesting Object Labels via SDK

https://www.loom.com/share/7c292d311c02490392e83b77319a4040?source=embed_watch_on_loom_cta
https://www.loom.com/share/7c292d311c02490392e83b77319a4040?source=embed_watch_on_loom_cta
https://www.loom.com/share/7c292d311c02490392e83b77319a4040?source=embed_watch_on_loom_cta
https://www.loom.com/share/7c292d311c02490392e83b77319a4040?source=embed_watch_on_loom_cta
https://www.loom.com/share/7c292d311c02490392e83b77319a4040?source=embed_watch_on_loom_cta

You can create Parent Tiers by adding the parents:[] attribute to any Object Label,

Study-Level, Series-Level, or Instance-Level Classification within your Taxonomy.

Parent Tiers are created and assigned from left to right and in descending order,

which means the first string in parents:[] will always be a Tier 1 Parent, the second

string will be a Tier 2 Parent, and so on.

For full documentation, please see our Taxonomy Object reference.

For an example of a two-tiered Object Label structure, please see the example code

below:

The above Taxonomy will be nested in the Annotation Tool as well. Tiers can also be

collapsed or expanded as necessary, allowing you to easily navigate through Label

Tiers and save screen space.

org.create_taxonomy_new(
 "Clinical Study 1",

 object_types=
 [
 {
 "category": "Herniated Disc",
 "labelType": "SEGMENTATION",
 "attributes": [],
 "color": "#7FFFD4",
 "classId": 0,
 # Creates the Tier 1 Parent 'Spine Pathologies' and Tier 2 Par
 "parents": ['Spine Pathologies', 'Disc Pathologies'],
 },
 {
 "category": "Bulging Disc",
 "labelType": "SEGMENTATION",
 "attributes": [],
 "color": "#DEB887",
 "classId": 1,
 "parents": ['Spine Pathologies', 'Disc Pathologies'],
 },
 {
 "category": "Degenerated Disc",
 "labelType": "SEGMENTATION",
 "attributes": [],
 "color": "#00FFFF",
 "classId": 2,
 "parents": ['Spine Pathologies', 'Disc Pathologies'],
 },
 {
 "category": "Vertebral Fracture",
 "labelType": "SEGMENTATION",
 "attributes": [],
 "color": "#FF7F50",
 "classId": 3,
 "parents": ['Spine Pathologies'],
 },
],
)

RedBrick AI allows users to attach custom HTML tooltips to any Object Label, Study-

Level Classification, Series-Level, or Instance-Level Classification. For larger, more

complex Taxonomies, these tooltips can be a great form of input for annotators or

serve as a record for any internal standards that may be associated with the

annotation itself.

First, open a Taxonomy and click on any Object Label or Classification. The Hint field

will then appear, allowing you to copy/paste your HTML into RedBrick or write your

own using our intelligent autocomplete feature.

Creating an HTML tooltip in the UI

HTML Tooltips

Creating HTML Tooltips in the UI

Creating HTML Tooltips via SDK

If you're prefer to create HTML Tooltips with the SDK, you can use the hint: string

attribute to insert a string of HTML that will display in a tooltip next to an annotation

upon hover. Please see the following code for an example of an Object Label with an

HTML tooltip.

All HTML elements can be included within the hint: string attribute, but images

must be inserted using and a relevant link.

The above code displays as follows in the Annotation Tool:

object_types=
 [
 {
 "category": "Herniated Disc",
 "labelType": "SEGMENTATION",
 "attributes": [],
 "color": "#7FFFD4",
 "classId": 0,
 "parents": ['Spine Pathologies', 'Disc Pathologies'],
 "hint": '<h2>Annotate each instance separately!</h2><a href=htt
 },
]

The HTML Tooltip that appears while hovering your cursor over the "?" icon

For security reasons, we do not allow scripts to be executed within HTML Tooltips.

Multiple labeling

RedBrick AI has comprehensive features to help you record multiple annotations per

image. There are two core use cases for multiple labeling:

1. Consensus: Have multiple labelers annotate a single task and record their inter-

annotator agreement scores, i.e., measure the overlap between their annotations.

The output of consensus is a single set of ground truth.

2. Task duplication: Have multiple annotators annotate a single image and

generate N unique ground truth records for a single image.

Task duplication vs. consensus

Consensus

Consensus provides you with both a quantitative measure of annotation quality (by

means of an Inter-Annotator Agreement Score) and the opportunity to create higher-

quality annotations by combining the opinions of multiple annotators.

With Consensus enabled, multiple annotators can be required to label each Task

in the Label Stage. Each individual annotator will only see an empty Task and will not

be able to view the annotations done by the other annotators.

Once all the annotators have completed the Task, RedBrick AI will calculate an Inter-

Annotator Agreement Score between the annotations. Please reference the

following documentation for more information on how we calculate these scores.

The Inter-Annotator Agreement Score is a quantitative measure of quality that can

help you select the best set of annotations created by your annotators. It also gives

reviewers the ability to arbitrate between the opinions of multiple annotators before

generating a single, high-quality Ground Truth.

Comparison between standard flow and Consensus flow with 3 labelers

How Does Consensus Work?

You can enable Consensus by navigating to Project Settings. Once enabled, you will

be required to select a minimum number of labelers that will be required to

annotate each Task. If your project has a Review Stage, you can enable auto-

acceptance to automatically accept Tasks whose agreement scores are higher than

the specified threshold.

RedBrick AI has an automatic assignment protocol that will automatically assign

multiple users to a Task. As annotators request Tasks by clicking on the Label button

in the top right of the Dashboard, RedBrick AI will automatically assign available

Tasks by prioritizing those that are already in progress/or assigned to other users.

Consensus Project Settings

Enabling Consensus

Assigning Tasks to Multiple Users

Alternatively, you can manually override any Task on the Data page. When

Consensus is enabled, the Assign dropdown will allow you to select multiple users.

You can manually assign more than the required number of labelers. The automatic

assignment protocol will only assign up to the number of required labelers, but you can

manually assign as many as you'd like.

Once all assigned annotators have completed a Task, RedBrick AI will generate an

Inter-Annotator Agreement Score, which is calculated by comparing each labeler's

annotations with those of every other labeler and averaging the pairs of scores.

Manual Multi-Assignment

Inter-Annotator Agreement

Agreement = Average(Score(U1,U2) , Score(U1,U3) , Score(U2,U3)).

The type of comparison function used to calculate the Score depends on the type of

data and annotations you and your team are working with. Please reference the

following documentation to read more about how RedBrick calculates Inter-

Annotator Agreement.

Agreement calculation

User 1 User 2 User 3

User 1
Score(U1,U2
)

Score(U1,U3)

User 2 Score(U2,U1) Score(U2,U3)

User 3 Score(U3,U1)
Score(U3,U2
)

Inter-Annotator Agreement for Tasks queued in Review

If there is no Review Stage after the Label Stage, the set of annotations with the

highest Agreement Score (with respect to other annotations) will be selected and

stored in Ground Truth. This is the set of annotations that will be exported by

default, but you can also export all versions of the annotations.

When a Review Stage is present, all annotations will be displayed in the Editor. The

list of all users that have annotated the Task is located on the right hand Consensus

Panel. By default, annotations are color-coded by user, but they can be grouped by

category.

The reviewer’s primary task is to analyze the multiple sets of annotations generated

by the labelers and produce a single set that will be saved and pushed to the next

A Task in Review with Consensus Enabled

Review Stage Absent

Review Stage Present

Best Annotations and Super Truth

Stage. In RedBrick AI's Editor, this single set of annotations is referred to as the Best

Annotations.

By default, RedBrick AI selects the set of annotations with the highest Inter-Annotator

Score as the Best Annotations.

Reviewers can view, hide/show, etc. all sets of annotations in a Task. This allows the

reviewer to analyze the work done by the labelers and select the set of annotations

that they consider to be of the highest quality.

If a reviewer is satisfied with an existing annotation set, they can simply designate it

as Best Annotations and accept the Task.

If a reviewer wishes to make changes to an existing set of annotations or start

completely from scratch, they can either click on the Edit button under a user in the

right hand panel or click on Create New under Super Truth.

Doing so will create a novel set of annotations known as a Super Truth and

automatically designate the set as Best. The reviewer can then annotate the Task as

they see fit.

Only Super Truth Annotations can be edited!

All other annotations in the Review Stage are View Only.

Once a reviewer is satisfied with the current Best Annotations, they can accept the

Task. This saves the Best Annotations and ascribes only that set to the Task. All other

annotations are also saved and are available on export. If the reviewer rejects the

Task, all labelers will be required to re-annotate the task.

The video below contains a brief walkthrough of how you can use Consensus in both

your Project and the Editor.

If a task has gone through Consensus, you will get access to all versions of the

annotations done by all users. You will also have access to additional metadata like

the annotation similarity scores. You can export the data using the following CLI

command inside your project directory:

Please view the format reference for an overview of the exported format.

If you want to export only a single version of the annotations (i.e. the labeler with the

best annotations or the base annotations qualified in Review), you can run the

following command:

Consensus Overview with Super Truth

5 min5 min 69 views69 views

0

redbrick export

redbrick export --no-consensus

Exporting Consensus Annotations

https://www.loom.com/share/62f152ff8b924d61abe6d8ea31672c22?source=embed_watch_on_loom_cta
https://www.loom.com/share/62f152ff8b924d61abe6d8ea31672c22?source=embed_watch_on_loom_cta
https://www.loom.com/share/62f152ff8b924d61abe6d8ea31672c22?source=embed_watch_on_loom_cta
https://www.loom.com/share/62f152ff8b924d61abe6d8ea31672c22?source=embed_watch_on_loom_cta
https://www.loom.com/share/62f152ff8b924d61abe6d8ea31672c22?source=embed_watch_on_loom_cta

Agreement calculation

This section of the documentation will cover how RedBrick AI calculates inter-

annotator agreement between two users.

For two sets of labels, annotation instances are matched up by category. For the

same category, instances are matched up by selecting pairs that maximize the overall

agreement score. For two instances of the same category, RedBrick AI uses the

following similarity functions

RedBrick AI uses IOU for these annotation types. For two annotations A and B IOU is

defined by:

Landmarks

For landmarks/keypoints, RedBrick AI uses a normalized Root Mean Squared Error

(RMSE) to compute similarity, where similarity is .

Where ​ is the number of components of the point (2 for 2D, 3 for 3D), and

are normalized components (by width, height, depth of the image) of the two points.

Comparisons of length measurements are done by comparing the two sets of points

(using the technique covered above) that define the length line.

IOU = ​

A ∩ B

A ∪ B

Similarity = 1 − RMSE

MSE = ​ ​(P ​ −
n

1

i

∑
n

i ​
)P̂i

2

RMSE = ​MSE

n P ​, ​i P ​î

Bounding box, Polygon, and Pixel Segmentation

Length Measurements

For angle measurements, the vectors between each arm of the angle measurement

are compared. The two angles comparing both sets of measurement arms are

computed. The similarity score is then defined by:

​Where ​ are the angles between the two sets of measurement arms.

For classification labels, the agreement is binary. If the chosen category and

attributes match, the consensus score will be 100%, otherwise, it will be 0%.

To generate a single score between two sets of labels, a series of averages are

computed.

1. Scores of matching annotations instances of the same category are averaged, to

generate a single score per category.

2. Scores are then averaged per category.

3. Scores are then averaged per label type to generate a single score per label type.

4. For videos, scores are calculated per frame and averaged to generate a single

score per sequence.

5. For multi-series studies, scores are averaged by volume to generate a single score

per study. ​

Similarity = 1 − ​

2π
θ ​ + θ ​1 2

θ ​, θ ​1 2

Angle Measurements

Classification

Generating a single score

Task duplication

Task duplication is a project workflow setting that allows you to create N tasks from a

single image so that N different labelers can annotate the image N times.

Create a Project with Task Duplication

While creating a project, in the Multiple Labeling section, select Multiple Outputs

and then select the number of "sibling tasks", i.e., the number of times a task will be

duplicated.

Once you upload tasks to your project, you will notice N x the number of images

uploaded to the project. Each distinct sibling task can be assigned to a different

annotator. You can view all sibling tasks together using the "view sibling" task

shortcut.

Get Started with Workspace

A workspace is a container in RedBrick AI that brings together data and multiple

projects that share that data.

To create a new workspace, Press the "New workspace" button on the top right

corner or you can click on the "+" Icon on the left-hand menu bar and select New

workspace from the dropdown.

Creating Workspace: Step by Step

Once created, you won't be able to change the name of the workspace.

Once the workspace is created, the next step is to upload the data. Uploading the

data in the workspace is similar to how you upload the data in the project.

If you'd like to upload annotation files alongside your images and/or volumes, you

must use our CLI/SDK.

Import Data & Annotations

Next step is to create a project inside the newly created workspace, To create a new

project click on the New Project button the top right corner.

Get Started with a Project

Step 1: Specify a Unique Workspace name

Step 2: Uploading Data to workspace

Step 3: Creating Project Inside Workspace

https://docs.redbrickai.com/importing-data/import-cloud-data

Cohort Creation

RedBrick AI cohort creation feature allows you to upload, index, share, ensure

reproducibility, and control the quality of your studies before you send them for

annotation.

To create a new cohort, follow these steps:

1. Navigate to the "Settings" section.

2. Click on "Cohort" in the left menu bar.

3. Enter the name of the new cohort.

4. Select a color code if you're adding multiple cohorts to help differentiate them

and click on Save Changes.

After creating a cohort, follow these steps to add filtered data points:

Create a New Cohort

Adding Datapoints to a Cohort

1. Navigate to the "Data" section.

2. Click on the "Filter" button located in the top right corner.

3. Select the desired data filter to apply.

4. Once the filter is applied, select the filtered data points.

5. Click on the "Add to cohort" button.

6. Choose the cohort to which you want to add the data points.

Alternatively, you can use the SDK method to add Datapoints to your cohorts.

Once data points are added to a cohort, you can add this cohort to a project by

following these steps:

1. Click on the "Filter" button located in the top right corner.

2. Filter for the cohort you want to add to the project.

3. Select all the filtered data points.

4. Click on the "Add to Project" button at the bottom of the screen.

5. Choose the desired project from the list.

Adding Cohort to a Project

https://sdk.redbrickai.com/sdk.html#redbrick.workspace.RBWorkspace.add_datapoints_to_cohort

https://streamable.com/?src_player=player-video-logo

Datapoint Classification

To manually classify data, you can use the Datapoint classification schema in the

workspace settings. The classifications can be various types, such as True or False,

Selection, Multi-Selection, or Textfield. Once modified, these classifications can be

used for searching and filtering. Classification can be done either from the table or

while previewing images.

To create a new data point classification, follow these steps:

1. Navigate to "Settings."

2. Go to "Datapoint Classification."

3. Choose from the four types of classifications: True or False, Single Select, Multi-

Select, and Textfield.

4. Add the new classification.

5. Click on "Save Changes."

Creating Datapoint Classification

Adding Classification to Datapoints

Once Classification is created, you can add the classification from table or while

previewing images.

Configuring Metadata Schema

Metadata Schema allows you to configure the workspace according to the metadata

schema extracted from a CSV file or the DICOM headers. This schema is highly

flexible and not strictly enforced on the uploaded data, providing maximum

adaptability to your data format and allowing the schema to evolve.

Metadata schemas support the following data types for your metadata:

NUMBER = "number"

STRING = "string"

DATETIME = "datetime"

ENUM = "enum"

Importing Metadata to RedBrick AI

A script for converting from CSV to a JSON file for uploading to RedBric
import csv
import json

def csv_to_list_of_dicts(filename):
 with open(filename, "r") as file:
 reader = csv.DictReader(file)
 data = list(reader)
 return data

Use the function
cases = csv_to_list_of_dicts("tags_and_paths.csv")

def item_to_redbrick_usable_url(item: str) -> str:
 """
 Convert the item stored in the csv file to something that RedBrick can

 This will vary depending on where your images are stored. In this case
 at a public url. Yours is probably stored in an S3 bucket and your pat

 Check docs.redbrickai.com for more information.
 """
 return "https://datasets.redbrickai.com/chest_ct_lidc_idri/" + item

upload_format = []
for case_ in cases:
 # ['LIDC-IDRI-0195/1-102.dcm', 'LIDC-IDRI-0195/1-103.dcm', ...]
 items = case_["items"]

 # parse the way items were stored in the csv file
 items = json.loads(items.replace("'", '"'))
 del case_["items"]

 metadata = case_

 upload_format.append(
 {
 "items": [item_to_redbrick_usable_url(item) for item in items]
 "metaData": metadata,
 }
)

Write to a JSON file

This will produce a JSON file in the following format:

Before creating the metadata schema in RedBrick AI, we recommend that you import

metadata into RedBrick AI.

with open("upload_format.json", "w+") as file:
 json.dump(upload_format, file, indent=2)

[
 {
 "items": [
 "https://datasets.redbrickai.com/chest_ct_lidc_idri/LIDC-IDRI-0125/1
 ...
],
 "metaData": {
 "PatientID": "ABC-125",
 "StudyDate": "20000101",
 "StudyTime": "",
 "AccessionNumber": "",
 "Modality": "CT",
 "Manufacturer": "GE MEDICAL SYSTEMS",
 "StudyDescription": "",
 "SeriesDescription": "",
 "PatientName": "",
 "PatientBirthDate": "",
 "PatientSex": "",
 "BodyPartExamined": "CHEST",
 "SliceThickness": "1.250000",
 "KVP": "120",
 "DistanceSourceToDetector": "949.075012",
 "DistanceSourceToPatient": "541.000000",
 "GantryDetectorTilt": "0.000000",
 "TableHeight": "156.500000",
 "RotationDirection": "CW",
 "XRayTubeCurrent": "400",
 "CountryOfResidence": "",
 "PatientIdentityRemoved": "YES",
 "PatientPosition": "FFS"
 }
 },
 ...
]

Once you've imported the metadata, you can create Cohorts based on your custom

metadata schema and then send those Cohorts to Annotate.

To create a Metadata schema, follow these steps:

1. Go to "Settings."

2. Click on "Metadata Schema."

3. Choose from the four schema types: Date, Number, Enum, and Textfield.

4. Create the desired schema.

After creating the schema, you can use it as follows:

1. Go to "Data."

2. Click on the "Filter" button in the top right corner.

3. Apply the filter to the metadata you want to view, sort, or add to a cohort.

4. Once filtered, select all the filtered data points.

5. Add the selected data points to a cohort or a project.

Creating Metadata Schema in RedBrick AI

Custom Label Validation

You can define a custom Javascript script that can continuously compare annotations

to a schema/set of rules and inform annotators (in real-time) of any mistakes in their

annotations. You can also prevent annotators from submitting tasks when your

validation script finds errors.

For most annotation projects, there is a schema/rule-set/taxonomy that annotators

must follow. A large portion of errors in annotation projects is due to oversights/slips

during labeling in adhering to the schema.

For example, the annotator must segment a tumor and fill out a few related

attributes if a tumor is found. A common error can be forgetting to fill out all

attributes when the tumor is present. Post-processing scripts usually reveal these

errors.

Prevent simple, recurrent errors from occurring by writing a set of tests that will be

run regularly, informing annotators of any mistakes they're making.

Overview of custom label validation

Custom Label Validation

5 min5 min

Overview

https://www.loom.com/share/9ae2535b823247eea128dbd2f24503e5?source=embed_watch_on_loom_cta
https://www.loom.com/share/9ae2535b823247eea128dbd2f24503e5?source=embed_watch_on_loom_cta
https://www.loom.com/share/9ae2535b823247eea128dbd2f24503e5?source=embed_watch_on_loom_cta
https://www.loom.com/share/9ae2535b823247eea128dbd2f24503e5?source=embed_watch_on_loom_cta
https://www.loom.com/share/9ae2535b823247eea128dbd2f24503e5?source=embed_watch_on_loom_cta

By default, all projects have a custom check to warn annotators when they submit

tasks without any annotations. You can enable/disable custom validation under

Project Settings -> Label Validation.

By default, annotators will just receive the error messages as a warning, and they will

still be able to submit the task anyway. To prevent the annotators from submitting

with any errors present, toggle the Prevent submission with errors switch.

Custom label validation in settings

Submission allowed

Submission with errors prevented

Prevent Submissions with Errors

You will write the custom validation as a Javascript function. This Javascript function

will run on each annotator's browser while they are annotating data.

The Javascript function has the following definition:

The validation function has a single input - a list of labels containing minimal meta-

data about the labels. Please see the definition of the Label object below:

function(task: Task, labels: Label[]): string[] {
 // Your custom validation logic
 assert(false, "This assertion was false");
}

Custom Javascript function

label: Label[]

interface Label {
 category: string[];
 attributes: LabelAttribute[];
 labelType: TaskType;
 numFramesLabeled?: number;
 instanceTracks?: { [name: string]: FrameState[] };
 seriesIndex?: number;
}

// Label attribute
interface LabelAttribute {
 name: string;
 value: boolean | number | string;
}

// Task Type
enum TaskType {
 ITEMS = 'ITEMS',
 CLASSIFY = 'CLASSIFY',
 BBOX = 'BBOX',
 POLYGON = 'POLYGON',
 POLYLINE = 'POLYLINE',
 POINT = 'POINT',
 ELLIPSE = 'ELLIPSE',
 SEGMENTATION = 'SEGMENTATION',
 MULTI = 'MULTI',
 MULTICLASSIFY = 'MULTICLASSIFY',
 LENGTH = 'LENGTH',
 ANGLE = 'ANGLE',
}

interface Task {
 orgId: string;
 projectId: string;
 stageName: string; // i.e. "Label" or "Review_1"
 taskId: string;
 name: string; // Name given for the task at upload
 metaData: Record <string, any>;
 classification?: Classification;
 series: Series[];
}

interface Series {
 name: string;
 metaData: Record <string, any>;
 dimensions: [number, number, number];

 classifications?: Classification[];
 instanceClassifications?: InstanceClassification[];

 landmarks?: Landmark[];
 landmarks3d?: Landmark3D[];
 measurements?: (MeasureLength | MeasureAngle)[];
 boundingBoxes?: BoundingBox[];
 cuboids?: Cuboid[];
 ellipses?: Ellipse[];
 polygons?: Polygon[];
 polylines?: Polyline[];

 segmentMap?: {
 [instanceId: string]: {
 category: Category;
 attributes?: Attributes;
 overlappingGroups?: number[];
 };
 };
}

interface VideoMetaData {
 frameIndex: number;
 trackId: string;
 keyFrame: boolean;
 endTrack: boolean;
}

interface Classification {
 attributes: Attributes;
 video?: VideoMetaData;
}

interface InstanceClassification {
 fileIndex: number;
 values: Attributes;
}

interface MeasurementStats {
 average?: number;
 area?: number;
 volume?: number;
 minimum?: number;
 maximum?: number;
}

interface Landmark {

 point: Point2D;
 category: Category;
 attributes?: Attributes;
 video?: VideoMetaData;
}

interface Landmark3D {
 point: VoxelPoint;
 category: Category;
 attributes?: Attributes;
}

interface MeasureLength {
 type: 'length';
 point1: VoxelPoint;
 point2: VoxelPoint;
 absolutePoint1: WorldPoint;
 absolutePoint2: WorldPoint;
 normal: [number, number, number];
 length: number;
 category: Category;
 attributes?: Attributes;
}

interface MeasureAngle {
 type: 'angle';
 point1: VoxelPoint;
 point2: VoxelPoint;
 vertex: VoxelPoint;
 absolutePoint1: WorldPoint;
 absolutePoint2: WorldPoint;
 absoluteVertex: WorldPoint;
 normal: [number, number, number];
 angle: number;
 category: Category;
 attributes?: Attributes;
}

interface BoundingBox {
 pointTopLeft: Point2D;
 wNorm: number;
 hNorm: number;
 category: Category;
 attributes?: Attributes;
 stats?: MeasurementStats;
 video?: VideoMetaData;
}

i t f C b id {

interface Cuboid {
 point1: VoxelPoint;
 point2: VoxelPoint;
 absolutePoint1: WorldPoint;
 absolutePoint2: WorldPoint;
 category: Category;
 attributes?: Attributes;
 stats?: MeasurementStats;
}

interface Ellipse {
 pointCenter: Point2D;
 xRadiusNorm: number;
 yRadiusNorm: number;
 rotationRad: number;
 category: Category;
 attributes?: Attributes;
 stats?: MeasurementStats;
 video?: VideoMetaData;
}

interface Polygon {
 points: Point2D[];
 category: Category;
 attributes?: Attributes;
 stats?: MeasurementStats;
 video?: VideoMetaData;
}

interface Polyline {
 points: Point2D[];
 category: Category;
 attributes?: Attributes;
 video?: VideoMetaData;
}

// i is rows, j is columns, k is slice
interface VoxelPoint {
 i: number;
 j: number;
 k: number;
}

// The position of VoxelPoint in physical space (world coordinate) compute
interface WorldPoint {
 x: number;
 y: number;
 z: number;
}

You can generate a sample Label[] object by going to the labeling tool -> opening

command bar cmd/ctrl + k -> Copy current label state to clipboard.

Your custom validation script must return a list of warning/error messages

describing the issues found. Return an empty array [] if no errors are found. These

error message strings will be displayed to the annotators on the labeling tool.

To help you write a validation function with several checks, RedBrick AI has a custom-

defined function assert that accepts a boolean statement and a corresponding

error message. The two scripts below will produce the same result:

}

interface Point2D {
 xNorm: number;
 yNorm: number;
}

type Category = string;
type Attributes = { [attributeName: string]: string | boolean | string[]

RedBrick AI - 4 September 2022

8 sec8 sec

With assert()

Returns string[]

https://www.loom.com/share/90aa36c4bad44069adeac75a5765589c?source=embed_watch_on_loom_cta
https://www.loom.com/share/90aa36c4bad44069adeac75a5765589c?source=embed_watch_on_loom_cta
https://www.loom.com/share/90aa36c4bad44069adeac75a5765589c?source=embed_watch_on_loom_cta
https://www.loom.com/share/90aa36c4bad44069adeac75a5765589c?source=embed_watch_on_loom_cta
https://www.loom.com/share/90aa36c4bad44069adeac75a5765589c?source=embed_watch_on_loom_cta

Before saving your script, you should validate that your code executes as expected.

Click on the validate button on the bottom right of the Settings page, and paste the

JSON object copied from the labeling tool to see if your code executes as expected:

function(task: Task, labels: Label[]): string[] {
 assert(labels.length >= 1, "You have not created any labels!");
 assert(labels.length <= 5, "You have created too many labels!");
}

Without assert()

function(task: Task, labels: Label[]): string[] {
 const errors = [];

 if (labels.length < 1) {
 errors.push("You have not created any labels!");
 }
 if (labels.length > 5) {
 errors.push("You have created too many labels!");
 }

 return errors;
}

Validate Your Code

Your custom validation script will be regularly run. If any warnings are found, an

indicator will appear on the right side of the bottom bar. If you have enabled

Prevent submissions with errors, the indicator will be red.

Submission with errors is allowed

Displaying the Validation on the Labeling
Tool

For this example, let's say we are expecting each task to contain the following

segmentations - necrosis, enhancing tumor, non-enhacing tumor and edema.

Submission with errors is prevented

Example Scripts

Check if Exact Categories are Present

This script validates only a single instance of a particular category has been created.

If you're expecting semantic segmentation labels, this check can ensure annotators

don't accidentally create multiple instance segmentations.

function(task: Task, labels: Label[]): string[] {
 const expectedCategories = [
 'necrosis',
 'enhancing tumor',
 'non-enhancing tumor',
 'edema',
];

 // Iterate over all expected categories
 for (const category of expectedCategories) {

 // Check if the category is present in any label
 const categoryPresent = labels.some(
 (label) => label.category[0] === category
);

 // assert with message
 assert(categoryPresent, `The ${category} category is missing!`);
 }
}

function(task: Task, labels: Label[]): string[] {
 const semanticCategory = 'edema';

 const labelsFiltered = labels.filter((label) => label.category[0] === se

 assert(
 labelsFiltered.length === 1,
 `Expected exactly 1 ${semanticCategory} annotation`
);
}

Validate Only Single Instance of a Category has been

Created

The following script examines the Series Identifier and verifies whether a specific

Segmentation type is present on it. In this example, you could use this script to be

sure that labelers cannot finalize a Series that ends in "DWI" (a common naming

convention for DWI images) without including an "Infarct" segmentation on the

Series.

More broadly speaking, this script is an example of the extensive functionality

available when combining the label , task , and series objects.

function (task: Task, labels: Label[]): string[] {
 assert(labels.length > 0, "You haven't created any labels! Are you sure
 for (let label of labels) {
 if (label.category[0] === "Infarct") {
 assert(
 task.series[label.seriesIndex].name.startsWith("DWI_"),
 "Segmentation 'Infarct' is allowed only on 'DWI' images"
);
 }
 }
}

Verify that Specific Segmentation Type is Visible on

Specific Series

Labeler Evaluation

RedBrick AI allows you to upload a Ground Truth annotation file alongside any image

or volume file for the purposes of evaluating labeler quality.

This can be useful when you'd like to have RedBrick AI calculate a score that you can

use to compare a specific labeler's performance against a known Ground Truth label

set.

When evaluating labeler quality using these Evaluation Tasks, you have the option of

allowing your labelers to visually reference the Ground Truth annotations that you

are using as a baseline or keeping them invisible to the labeler.

This feature is referred to as either Non-blinded Annotations or Blinded

Annotations, respectively.

To create an Evaluation Task in RedBrick AI, you can take the following steps:

1. Upload your image/volume alongside your Ground Truth annotation file

("Baseline Annotations"). A walkthrough of how to do so can be found in our

documentation for importing annotations.

Sample Flow

Calculating Labeler Quality Scores

Blinded vs. Non-blinded Annotations

2. After your Task has been created, determine whether you would like your labelers

to see the Baseline while working. Navigate to your Project Settings and enable

or disable the Show reference annotations toggle.

1. With the toggle enabled, labelers will be able to see the Baseline Annotations

while working. With the toggle disabled, the Baseline Annotations will be

invisible to the labeler.

2. Please note that we also generally recommend disabling Automatic Task

Assignment when testing labeler quality.

3. Assign the Task to your labeler for completion.

4. After your labeler finalizes the Task, an agreement score will be displayed on the

Data Page.

Relevant toggles in Project Settings

A completed Evaluation Task and score

Comments & Raise Issue

Comments allow you to communicate with your team right alongside your

annotation task. Comments are usually used to ask questions or provide feedback on

annotations.

To create a comment, head over to the Comments tab & leave a comment.

You can organize threads of conversations on comments by replying to a specific

comment. This is especially useful in organizing comments across stages in a project.

Comments

Create a comment

Reply to a comment

Often you may want to visually pin comments to some part of the image or

annotation canvas. You can do so by selecting a comment and clicking the pin icon.

After you drop a pin on the canvas, you can select the comment on the right sidebar

to jump to the pin location.

Pin a comment

Leave a comment on a label

You can reference a specific label entity in your comment by leaving a comment on

that entity. To do so, select an entity, then go to the Entity comments section on the

right sidebar and leave a comment there.

All comments will appear in the main comments section (accessed from the top bar),

and label-specific comments will also appear by selecting an entity within the Entity

comments section.

Once you have completed a conversation thread or resolved the question/issues

outlined in a comment, you can "resolve" the comment to visually differentiate the

comment from others.

Resolving comments

Raise issue is a tool that allows annotators to remove a task from their queue and

ask Project Admins questions or help resolve the problem.

Raise Issue

Once an annotator raises an issue, they will not be able to access the task until the

admin resolves it and sends it back to the annotator.

Annotators can raise an issue from the labeling tool. Click on skip task, then raise

issue.

When an Admin opens an issue task, they will be able to see it in "view mode," i.e.,

the annotations will not be editable. Admins can respond to comments left by the

annotators and send the task back to the labeler.

Reference Standards

RedBrick AI allows you to designate Tasks in the Ground Truth Stage as Reference

Standards, making them visible to all members of a Project's Workforce.

Reference Standards make it easier than ever to provide your team with an

accessible, interactive version of the annotation work to be done, as well as

communicate instructions and expectations to labelers.

Project Admins (and above) have the ability to set a Ground Truth Task as a

Reference Standard.

To set a Ground Truth Task as a Reference Standard, simply click on the hamburger

menu on the right hand side of the data page and select Set as reference standard.

The Task will then become visible to all members of the Project.

Setting a Ground Truth Task as a Reference Standard (Admin)

Setting a Task as a Reference Standard

Admins may manipulate a Reference Standard just as they would any other Ground

Truth Task (i.e. remove "Reference Standard" designation, edit, move back to Label

Stage, etc.).

Project Members can view a Reference Standard, but they cannot modify it.

There are currently no SDK methods available to create, upload, or modify a Reference

Standard. Be on the lookout for improvements coming soon!

To view a Reference Standard as a Project Member, simply filter your Task view by

Reference Standards and click on Open in Editor.

Viewing a Project's Reference Standards as a Labeler

Viewing a Reference Standard as a Project Member

Webhooks

Webhooks allow you to receive an HTTP push notification triggered by certain events

within a project. Currently, webhooks are triggered by the following events:

1. Task created: When a data point is uploaded, and a task is created from that data

point.

2. Task entered stage: When a task enters a new stage in the labeling workflow.

3. Task deleted: When a task is deleted.

Task created

{
 "version": "v1.0",
 "events": 1,
 "payload": [
 {
 "event": "TASK_CREATED",
 "id": "...",
 "timestamp": ...,
 "data": {
 "orgId": "...",
 "projectId": "...",
 "taskId": "...",
 "taskName": "...",
 "updatedBy": "..."
 }
 }
]
}

Task entered stage

{
 "version": "v1.0",
 "events": 1,
 "payload": [
 {
 "event": "TASK_ENTERED_STAGE",
 "id": "...",
 "timestamp": ...,
 "data": {
 "orgId": "...",
 "projectId": "...",
 "taskId": "...",
 "stageName": "...",
 "updatedBy": "..."
 }
 }
]
}

Task deleted

{
 "version": "v1.0",
 "events": 1,
 "payload": [
 {
 "event": "TASK_DELETED",
 "id": "...",
 "timestamp": ...,
 "data": {
 "orgId": "...",
 "projectId": "...",
 "taskId": "...",
 "taskName": "...",
 "updatedBy": "..."
 }
 }
]
}

Configure webhook from project settings, as shown in the image below.

You can use tools like https://webhook.site/ to test the webhook and inspect the

response format.

Using webhooks

https://webhook.site/#!/view/8df76e5a-9a58-4394-8c65-854d305bb5be

Annotation & viewer

Viewer Basics

RedBrick AI is designed for native medical image viewing and annotation, supporting

all radiology modalities. The platform supports X-ray, CT, MRI, Ultrasound, and other

2D, 3D, and video modalities.

There are 4 main components to the annotation interface. We will refer to each of

these components throughout the documentation.

1. Left sidebar is where you create, edit, and interact with annotations and

attributes.

2. Top bar contains Task-level actions such as task submission and saving and the

environment settings (Windowing, Layout), Version Explorer, Segmentation Tools,

and Quick Measurement Tools.

3. Context panel shows additional information and settings for any currently

selected tool(s).

4. Main canvas is where you interact with your images and apply your annotations

to your images/volumes.

Viewing and navigating through your volume

Interacting with your images in RedBrick AI is similar to other medical imaging &

PACS viewers. This section covers the basic shortcuts and functions for navigating

through a volume.

You can find key shortcuts by clicking on the (?) Help button on the bottom right.

1. Scroll: Scroll over any of the viewports.

2. UI: Use the viewport's slider or up/down slice buttons.

3. Shortcut: Use the up arrow and down arrow keyboard shortcuts on the

selected viewport.

4. Quick slice change: Hold alt / option and left click drag to quickly

change slices.

1. Zoom: Hold ctrl and scroll to zoom.

2. Quick zoom: Hold ctrl and right click drag for a quick zoom.

3. Pan: Hold shift and left click drag to pan.

1. UI: Adjust windowing on the context panel by activating it from the top bar.

2. Shortcut: Hold ctrl and left click drag vertically to adjust the level and

horizontally to adjust the width.

1. Rotate: Left click drag to rotate the volume in 3D.

Changing slices

Zoom and pan

Windowing

3D model viewing

https://share.redbrickai.com/R7rLT17M
https://share.redbrickai.com/CKSfZHCn
https://share.redbrickai.com/Rp5RcGGN

2. Rotate fixed plane: Hold ctrl and left click drag to rotate the model fixed

in the plane.

3. Pan: Hold shift and left click drag to pan.

4. Zoom: Hold ctrl / cmd and scroll to zoom.

1. Rendering preset: adjusts the photorealistic rendering style.

2. Shift: adjusts the volume rendering transfer function to modify the rendering.

3. Maximum opacity: sets the maximum voxel opacity of the rendered image.

Basic viewing interactions.

Crosshairs will synchronize multiple projections of a single volume. Oblique planes

allow you to view a non-orthogonal view of a volume.

Crosshairs will only be available on 3D modalities. Also, you must have multiple

orthogonal projections in your viewport (for example, Axial and Sagittal) for cross-hairs

to appear.

1. Activate: From the top bar or by pressing c .

2. Deactivate: From the top bar or by pressing esc . By default, deactivated

crosshairs will be shown on the canvas and can be reactivated by selecting them.

To hide deactivated cross-hairs press cmd/ctrl shift c .

Basic windowing functions.

Crosshairs and oblique plane

Crosshairs

Oblique plane

https://share.redbrickai.com/2S9DVjnD
https://share.redbrickai.com/2S9DVjnD

1. Activate: Right click on any viewport, then select activate oblique . This will

enable an oblique plane for just the selected projection.

2. Usage: The oblique plane crosshair for each viewport will be color-coded. For

example, the Sagittal oblique plane is purple in the video below. Rotating the

purple crosshair creates an oblique plane on the Sagittal view.

Maximum Intensity Projection (MIP) displays the highest intensity values in a 3D

image along a viewing axis, useful for highlighting bright structures like blood vessels.

Minimum Intensity Projection shows the lowest values, useful for revealing dark

structures like airways.

You can only view MIP along the imaging axis for any volume.

To activate, change the displayed view to MIP in any viewport using the view

dropdown on the top left.

Using crosshairs and oblique planes.

Maximum and minimum intensity projection (MIP)

RedBrick AI's viewer is flexible in how it displays series. You can customize the layout

manually or use hanging protocols to display single or multiple series.

1. Change layout grid: Each modality has a default layout grid which can be

modified from the layout grid on the top bar. The viewer supports everything

between 1x1 and 3x3, showing a maximum of 9 views.

2. Displaying series: You can customize what is shown in each viewport; this can be

any 2D or 3D view.

Displaying MIP.

Drag and drop: You can drag and drop any series or projection from the layout

context panel to a target viewport.

Managing your layout

Changing layout and displaying series

https://share.redbrickai.com/35RfQGH2
https://share.redbrickai.com/35RfQGH2
https://share.redbrickai.com/35RfQGH2

Drag and drop.

Viewport selector: You can use the dropdown on any viewport to cycle

between projections of that series.

Viewport selector.

Quick change: You can hover over the thumbnails on the layout context panel

to directly place the view in the corresponding layout position.

3. Maximize and minimize view: When you have more than 2 views displayed, you

can maximize 1 viewport so that it's larger than the rest. Pressing enter will

expand the currently selected viewport. Alternatively, you can right click and

select maximize viewport on the layout menu.

4. Full-screen mode: Press f to enter full-screen mode for distraction-free

annotation.

1. Manually: You can create an MPR view by manually configuring the viewport and

selecting the projections of your series following the instructions above.

2. Right-click menu: You can also display an MPR view by right click on the

viewport and selecting MPR layout . This will create a new layout tab with the

MPR view.

Often you may want to move between two pre-set viewing configurations. For

example, between a large 3D view and a view of all projections - Sagittal, Coronal,

and Axial. This can be accomplished by creating multiple layout tabs.

Quick change.

Multiplanar reconstruction (MPR)

Creating multiple layout tabs

https://share.redbrickai.com/Q28P1X0m
https://share.redbrickai.com/Q28P1X0m
https://share.redbrickai.com/Q28P1X0m

Creating multiple layout tabs

Custom Hanging Protocol
Write a script to dynamically arrange the viewports for your project

The Custom Hanging Protocol feature allows you to write a script that will

programmatically define the visual layout of your Annotation Tool at the Project

level.

Pre-configuring parameters such as Windowing settings, Thresholding settings, the

number of viewports in a Layout Tab, which views display by default, etc., is both an

easy way to save time for your annotators and makes for a much smoother overall

annotation experience.

This guide provides an overview of the available functions and types to help you

effectively manage these settings. At present, you can control the following:

Hanging protocol script

3 min3 min

The dimensions of a Layout Tab (setDimensions):

Script Usage Guide

https://www.loom.com/share/a5b5255cd1954bd590849a8e939c9b5f?source=embed_watch_on_loom_cta
https://www.loom.com/share/a5b5255cd1954bd590849a8e939c9b5f?source=embed_watch_on_loom_cta
https://www.loom.com/share/a5b5255cd1954bd590849a8e939c9b5f?source=embed_watch_on_loom_cta
https://www.loom.com/share/a5b5255cd1954bd590849a8e939c9b5f?source=embed_watch_on_loom_cta
https://www.loom.com/share/a5b5255cd1954bd590849a8e939c9b5f?source=embed_watch_on_loom_cta

The Custom Hanging Protocol script takes the available Series for a particular Task as

input and returns the layout dimensions and list of views to display.

REQUIRED: the number of columns in a Layout Tab (numColumns)

REQUIRED: the number of rows in a Layout Tab (numRows)

The contents of each viewport in a Layout Tab (setViews):

REQUIRED: an array describing each viewport's content (views)

REQUIRED: Which series to show (seriesIndex)

REQUIRED: Which way to view the series (plane)

Flip the view horizontally (flippedHorizontally)

Flip the view vertically (flippedVertically)

Activate Intellisync (synchronized)

Maximize a single viewport in a Layout Tab (expanded)

The default Windowing setting for each Series (setWindowing):

REQUIRED: the number of the Series (seriesIndex)

REQUIRED: the desired Windowing Level (level)

REQUIRED: the desired Windowing Width (width)

The default Thresholding setting for each Series (setThresholding):

REQUIRED: the number of the Series (seriesIndex)

REQUIRED: the lower limit of the Thresholding range (min)

REQUIRED: the upper limit of the Thresholding range (max)

Create and configure a new Layout Tab in your Task (nextTab)

Configuration settings for the Annotation Tool (setSegmentationSettings)*

(Note: this function has been replaced by the Tool Settings page)

Custom Hanging Protocol Format Reference

function setViews(views: View[]) {
 //...
}
function setDimensions(numColumns: number, numRows: number) {
 // ...
}
function setWindowing(seriesIndex: number, level: number, width: number){
 // ...
}
function setThresholding(seriesIndex: number, min: number, max: number) {
 // ...
}

function nextTab()

// this function has been replaced by the Tool Settings page of Project Se
function setSegmentationSettings(
 [
 {
 toolName: ToolOptions;
 enabled: boolean;
 modes?: ToolModes[];
 defaultMode?: ToolModes;
 defaultTool?: boolean;
 }
]
);

// When a user uploads a Task and enables Hanging Protocols,
// the hangingProtocol() function takes Series[] and the following paramet
interface Series {
 seriesIndex: number;
 is2DImage: boolean;
 isVideo: boolean;
 numFrames: number;
 name: string; // User defined name if available, else "A", "B", ...
 imagingAxis: 'AXIAL' | 'SAGITTAL' | 'CORONAL';
}

interface View {
 plane: 'AXIAL' | 'SAGITTAL' | 'CORONAL' | '3D' | 'MIP';
 seriesIndex: number;
 flippedHorizontally?: boolean;
 flippedVertically?: boolean;
 synchronized?: boolean;
 expanded?: boolean; // Only applicable to a single view in a given Layou
}

This default script uses some defined macros to make setting the view easier.

This script sets each Series as a single viewport that is viewed on the imaging axis.

function hangingProtocol(allSeries: Series[]) {
 // This is the default layout script
 if (allSeries.length > 1) {
 setMultiSeries();
 } else if (allSeries[0].is2DImage) {
 setSingleView();
 } else {
 setMPR();
 }
}

function setSingleView(seriesIndex=0) {
 setDimensions(1,1);
 setViews([
 {
 plane: allSeries[seriesIndex].imagingAxis,
 seriesIndex: seriesIndex,
 }
]);
}

Examples

Default Script

Set Single View

Set Multi-Series Layout

The following script creates 2 Layout Tabs, each containing 2 Series.

function setMultiSeries() {
 function singleSeries(series_, index) {
 return {
 plane: series_.imagingAxis,
 seriesIndex: index,
 };
 }
 let views = allSeries.map(singleSeries);

 setViews(views.slice(0,9));
}

function setMPR(seriesIndex=0) {
 let targetSeries = allSeries[seriesIndex];
 setDimensions(2,2);
 setViews([
 {
 plane: 'SAGITTAL',
 seriesIndex: seriesIndex,
 expanded: targetSeries.imagingAxis === 'SAGITTAL',
 },
 {
 plane: 'CORONAL',
 seriesIndex: seriesIndex,
 expanded: targetSeries.imagingAxis === 'CORONAL',
 },
 {
 plane: 'AXIAL',
 seriesIndex: seriesIndex,
 expanded: targetSeries.imagingAxis === 'AXIAL',
 },
 {
 plane: '3D',
 seriesIndex: seriesIndex,
 }
]);
}

Set Multi-Planar Reconstruction

Set and Configure Multiple Layout Tabs

Hanging protocols can be used along side Intellisyncfor ease of use when annotating

scans in a study.

For example, let's assume that we have uploaded a single Task containing 4 Series

from an MRI study: T1, T1CE, T2, and Flair weighted MR scans.

After we enable Hanging Protocols, the hangingProtocol() function will take the 4

Series as an input and parse them in the following way:

if (allSeries.length === 4) { // executes when there are 4 total Series in
 setDimensions(2, 1); // set 2x1 layout for Layout Tab 1
 setViews(// adding the first and second image/volume to Layout Tab 1
 [
 {
 seriesIndex: 0,
 plane: 'SAGITTAL'
 },
 {
 seriesIndex: 1,
 plane: 'SAGITTAL'
 }
]
);
 nextTab(); // create and configure Layout Tab 2
 setDimensions(2, 1); // set 2x1 layout for Layout Tab 2
 setViews(// add third and fourth image/volume to Layout Tab 2
 [
 {
 seriesIndex: 2,
 plane: 'SAGITTAL'
 },
 {
 seriesIndex: 3,
 plane: 'SAGITTAL'
 }
]
)

Synchronize Views

We can then use the information that has been parsed by the hangingProtocol()

function to generate a script that sorts our views, displays the imaging axis and

activates Intellisync.

[
 {
 seriesIndex: 0,
 is2DImage: false,
 isVideo: false,
 numFrames: 1,
 name: 'T1',
 imagingAxis: 'SAGITTAL',
 },
 {
 seriesIndex: 1,
 is2DImage: false,
 isVideo: false,
 numFrames: 1,
 name: 'T2',
 imagingAxis: 'SAGITTAL',
 },
 {
 seriesIndex: 2,
 is2DImage: false,
 isVideo: false,
 numFrames: 1,
 name: 'T1CE',
 imagingAxis: 'SAGITTAL',
 },
 {
 seriesIndex: 3,
 is2DImage: false,
 isVideo: false,
 numFrames: 1,
 name: 'Flair',
 imagingAxis: 'SAGITTAL',
 },
]

Configuring your Project's toolkit is now done on the Tool Settings page of your Project

Settings.

// sort series by Name
let priorities = ['t1', 't1ce', 't2', 'flair'];
allSeries.sort((a, b)=>priorities.indexOf(a.name.toLowerCase()) - priorit

// display Series along the imaging axis
let imagingAxis = allSeries[0].imagingAxis;

// filter out views that were imaged in a different axis
let eligibleSeries = allSeries.filter((series) => series.imagingAxis ===

// Configure viewports
setViews(eligibleSeries.map((series) => {
 return {
 seriesIndex: series.seriesIndex,
 plane: series.imagingAxis,
 synchronized: true,
 };
}));

Tool Configuration with Hanging Protocols

Multiple Modalities

You can now combine multiple modalities such as 2D image, videos, and 3D scans

and annotate them all together as a single study.

To create a study using multiple modalities, just upload the data together as a single

task. You can upload as many DICOM or NIfTI series as you want. You can also

include standard web image formats such as .jpg and .png however these will be

treated as a single entity, either a single video clip or a single image, depending on

the number of files.

Depending on which viewport you have selected and the type of data in that

viewport, different label types will be available to create.

Available tools for 2D X-ray

Available tools for 3D CT

Intellisync
Smart synchronization between multiple volumes in a single study.

It is common to have multiple scans that are taken with different parameters in the

same axis (i.e. T1 vs T2 MRI). Intellisync is a feature that synchronizes multiple series

in different viewports to make annotation and diagnosis faster. For viewports that

are aligned, scroll position will be synchronized. For viewports that are out of

alignment, the intersection between the current instance and the other viewport is

shown as a reference line.

When activated, intellisync applies to all 2D viewports of the chosen series. It can also

be activated for all series at once.

1. Command bar: search for Intellisync

2. Keyboard (selected viewport): Command + a (Mac) or Control + a (Windows)

3. Keyboard (All series): Shift + Command + a (Mac) or Shift + Control + a
(Windows)

4. Mouse: Through the action dropdown in the top right of the given viewport

Activating Intellisync

Intellisync with orthogonal imaging axis

Intellisync - reference lines

10 sec10 sec

https://www.loom.com/share/31ee8cf4d40946059365ee9686d95514?source=embed_watch_on_loom_cta
https://www.loom.com/share/31ee8cf4d40946059365ee9686d95514?source=embed_watch_on_loom_cta
https://www.loom.com/share/31ee8cf4d40946059365ee9686d95514?source=embed_watch_on_loom_cta
https://www.loom.com/share/31ee8cf4d40946059365ee9686d95514?source=embed_watch_on_loom_cta
https://www.loom.com/share/31ee8cf4d40946059365ee9686d95514?source=embed_watch_on_loom_cta

Intellisync with label mirroring and weighted MRIs

Intellisync feature

37 sec37 sec

Reference lines are computed based on image position patient and image

orientation patient headers in each DICOM instance. Therefore, reference lines

are only available for data sourced from DICOM files.

For scroll syncing, the absolute world position is used. This means that data must

be registered correctly. This feature will work best on data with identical headers

(position, direction, dimensions, and orientation).

For scroll syncing, eligibility for syncing is computed based on the viewing angle of

the viewports. Therefore, two views that seem like they should sync because they

both say "AXIAL" may not if their coordinate systems don't align well.

Troubleshooting and limitations

https://www.loom.com/share/b3fcff5356d244e5b3a952681d435a1b?source=embed_watch_on_loom_cta
https://www.loom.com/share/b3fcff5356d244e5b3a952681d435a1b?source=embed_watch_on_loom_cta
https://www.loom.com/share/b3fcff5356d244e5b3a952681d435a1b?source=embed_watch_on_loom_cta
https://www.loom.com/share/b3fcff5356d244e5b3a952681d435a1b?source=embed_watch_on_loom_cta
https://www.loom.com/share/b3fcff5356d244e5b3a952681d435a1b?source=embed_watch_on_loom_cta

Annotation Mirroring

It is common to have multiple series that show the same anatomy with different

scanner directions or scanner settings.

The segmentation mirroring feature allows you to "mirror" the segmentations from a

single volume onto another volume. This allows you to compare and contrast

information from different scans to modify the same segmentation file.

To activate, load up a task with more than one 3D series, and select "Mirror labels to

all volumes." This option will not be available if your task only has a single series.

Segmentation mirroring demonstration

RedBrick AI - Segmentation mirroring

3 min3 min

Activating and using

https://www.loom.com/share/722a414d86e947d582d2790270e2b251?source=embed_watch_on_loom_cta
https://www.loom.com/share/722a414d86e947d582d2790270e2b251?source=embed_watch_on_loom_cta
https://www.loom.com/share/722a414d86e947d582d2790270e2b251?source=embed_watch_on_loom_cta
https://www.loom.com/share/722a414d86e947d582d2790270e2b251?source=embed_watch_on_loom_cta
https://www.loom.com/share/722a414d86e947d582d2790270e2b251?source=embed_watch_on_loom_cta

Once activated, you can now edit any segmentation labels from the series that you

are mirroring in the same way as any other segmentation label.

Activating label mirroring

This feature will only be effective if your data is properly registered. We use the

header information of your DICOM and NIfTI files to align the data in three

dimensions. If your series are not properly aligned, the mirroring will also be

incorrectly aligned.

While using label mirroring, 2D tools will not be available, only 3D variants.

Notes, warnings, and limitations

Creating, Editing and
Deleting Annotations

All of the Object Labels that you created inside of your Taxonomy will display in the

the left side bar of the Annotation Tool. Depending on the elements you included in

your Taxonomy, the left side bar will contain up to 4 sections: Study Classification,

Series Classification, Instance Classification and Object Labels.

If present, your Study, Series and Instance Classifications will be present under their

own expansion panels in the lefthand toolbar.

Depending on the type (Boolean, Text, Select, or Multiselect), you can directly fill in

the corresponding checkbox, select value, or textfield in the grid.

Click and drag to adjust the size of the grid for easy interaction and viewing!

Study, Series and Instance Classification

An Object Label has three components:

1. a Name (e.g. "Aortic Calcification")

2. a Type (e.g. "Segmentation", "Polygon", "Bounding Box", etc.)

3. Attributes ("Boolean", "Text", "Select" and "Multiselect", all of which are optional)

The left side bar will show all the Object Labels with an option to create Entities of

that Object Label. There are two ways to create an Entity of an Object Label:

1. Click on the "+" button next to the corresponding Object Label;

2. Use the numeric hotkeys (e.g. 1, 2, 3, etc.) displayed next to the corresponding

Object Label

When you create an Entity, the default tool for that Label type will be automatically

selected (e.g. the Brush Tool will be selected by default when creating an Entity of a

Segmentation).

Object Labels

Creating Object Labels

Your default Segmentation Tool can be configured on the Tool Settings page within your

Project Settings.

All Entities are organized within each Object Label's expansion panel.

When an annotation is created inside of the Annotation Tool, a corresponding

segmentMap value is also generated to reflect the order in which the annotation was

created.

In other words, when exporting a Task's annotations, the first annotation created by

a labeler will have a segmentMap value of "1" in the accompanying JSON file; the

second annotation will have a segmentMap value of "2", and so on. For more detailed

information about how segmentations are mapped, please see our Format

Reference for Exported Annotations.

The RedBrick AI SDK also supports both semantic export and exports of binary masks

using the export_tasks() SDK method.

Creating Instances of Segmentations in the Lef…

23 sec23 sec 82 views82 views

0

A Quick Note on Annotation Mapping and Exports

Selecting and Editing Object Labels

https://docs.redbrickai.com/python-sdk/reference/export-annotation-format#segmentation
https://docs.redbrickai.com/python-sdk/reference/export-annotation-format#segmentation
https://docs.redbrickai.com/python-sdk/reference/export-annotation-format#segmentation
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://www.loom.com/share/ddf38c93fd5646b9af04f631f368b745?source=embed_watch_on_loom_cta
https://www.loom.com/share/ddf38c93fd5646b9af04f631f368b745?source=embed_watch_on_loom_cta
https://www.loom.com/share/ddf38c93fd5646b9af04f631f368b745?source=embed_watch_on_loom_cta
https://www.loom.com/share/ddf38c93fd5646b9af04f631f368b745?source=embed_watch_on_loom_cta
https://www.loom.com/share/ddf38c93fd5646b9af04f631f368b745?source=embed_watch_on_loom_cta

To edit an Object Label, you must first select it from the left sidebar. Once you select

the Entity from the left side bar, the default tool for that label type will be selected

automatically, and you can interact with the canvas to apply edits to that Entity.

When a Object Label Entity is selected, all interactions with the canvas will only modify

that particular Entity.

There are several actions available that are designed to make selecting, viewing, and

editing Object Labels as easy as possible for labelers and reviewers.

All actions can be accessed by clicking the three-dot menu button on a Label Entity.

Other Object Label Actions

You can quickly swap between existing Labels of the same Type (i.e. all of your

Segmentation Object Labels, all of your Polygon Object Labels, all of your Bounding

Boxes, etc.) in the right side context panel.

To reveal this menu in the right hand Context Panel, either click on the Object Label

in the viewport or use the "Edit" label action.

With the Context Panel open, you can also add, modify, and delete Attributes for an

Object Label.

Editing a Selected Label and Attributes

You can delete the selected Object Label by using the delete / backspace hotkey.

Alternatively, you can use the Delete Action in the actions dropdown.

To delete all Labels, use the shortcut shift + delete / shift + backspace .

The Delete All Labels action cannot be undone. Please ensure that you wish to

irrecoverably delete the most recent version of all of your labels before using the Delete

All Labels action.

Alternatively, you can use the Delete All action in the Object Labels three-dot menu

dropdown.

You can hide the label you are currently hovering over by using the h hotkey. If you

are not hovering over a label (either on the canvas or on the left side bar), the h

hotkey will hide/show the currently selected label.

Editing a Label and its Attributes

31 sec31 sec 43 views43 views

0

Deleting Object Labels

Hide and Show Labels

https://www.loom.com/share/55eaf5f270a2407788dc99439201bb29?source=embed_watch_on_loom_cta
https://www.loom.com/share/55eaf5f270a2407788dc99439201bb29?source=embed_watch_on_loom_cta
https://www.loom.com/share/55eaf5f270a2407788dc99439201bb29?source=embed_watch_on_loom_cta
https://www.loom.com/share/55eaf5f270a2407788dc99439201bb29?source=embed_watch_on_loom_cta
https://www.loom.com/share/55eaf5f270a2407788dc99439201bb29?source=embed_watch_on_loom_cta

To hide/show all labels use the shortcut shift + h or the hide all action in the

Object Labels three dot menu dropdown.

You can lock/unlock the label you are currently hovering over by using the u

hotkey. If you are not hovering over a label (either on the canvas or in the left side

bar), the u hotkey will lock/unlock the currently selected label.

To lock/unlock all labels, use the shortcut shift + u or the Lock All Action in the

Object Labels three-dot menu dropdown.

Watch the video below to understand how to prevent/allow the overwriting of

annotations.

Vibrant Mode allows you to temporarily highlight a particular Entity. For example, if

you have several small Entities of nodules in a chest CT, you can hover over any

particular Entity on the left side bar or on the canvas and use the v shortcut to

activate Vibrant Mode to highlight that Entity.

Lock and Unlock

2 min2 min

Lock and Unlock Labels

Toggle Vibrant Mode

Jump to Label

https://www.loom.com/share/7daf374f6967429dad43b2962c6ccd8f?source=embed_watch_on_loom_cta
https://www.loom.com/share/7daf374f6967429dad43b2962c6ccd8f?source=embed_watch_on_loom_cta
https://www.loom.com/share/7daf374f6967429dad43b2962c6ccd8f?source=embed_watch_on_loom_cta
https://www.loom.com/share/7daf374f6967429dad43b2962c6ccd8f?source=embed_watch_on_loom_cta
https://www.loom.com/share/7daf374f6967429dad43b2962c6ccd8f?source=embed_watch_on_loom_cta

The Jump to Label Action will change the current slice position to the closest slice

position that contains a particular annotation. This is useful for revealing annotations

on the canvas.

RedBrick AI's Version Explorer allows users to reference (and, if necessary, restore)

previous versions of their annotations within the Annotation Tool.

To reference a previously saved set of annotations, click on the Version Explorer

button in the top right corner of the screen. The Version Explorer will then display in

the right hand Context Panel., allowing you to access previously saved versions of

your annotations.

Restoring an older set of annotations will both:

1. Force a save of the most current set of annotations;

2. Duplicate the older version of annotations and create a new version based on that

duplicate.

Annotation Version Explorer

For example, let's say you (a reviewer) open a Task and see that the latest version of

a labeler's annotations is Version 5, but you'd like to restore Version 3. Choosing to

restore Version 3 will immediately create a duplicate of that version, designate it as

the most current version (in this case, Version 6), and display the labels in the Editor.

Please see the short video tutorial below for a full overview:

Version Explorer Tutorial

Version Explorer

40 sec40 sec

https://www.loom.com/share/1962d135c2b843d58e27b42a64fbf219?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/1962d135c2b843d58e27b42a64fbf219?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/1962d135c2b843d58e27b42a64fbf219?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/1962d135c2b843d58e27b42a64fbf219?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/1962d135c2b843d58e27b42a64fbf219?source=embed_watch_on_loom_cta&t=0

Visualization and Masking

As of v2023.10.31.1:

- Thresholding is now referred to as Masking;

- the Windowing Panel is now referred to as the Visualization Panel;

RedBrick AI allows you to apply filters to your images and volumes to help with

visualization and segmentation.

For a brief visual overview, please see the following video tutorial:

You can adjust the Window Width and Level of your volumes by pressing CTRL and

LEFT CLICK dragging on any viewport - up/down to adjust Window Level,

left/right to adjust Window Width.

You see and/or modify the current Visualization settings by selecting the Visualization

Panel on the top right of the tool bar.

Visualization and Masking

2 min2 min 73 views73 views

0

Visualization

https://www.loom.com/share/775da2c8809d4dc2813db013b8bd7a61?source=embed_watch_on_loom_cta
https://www.loom.com/share/775da2c8809d4dc2813db013b8bd7a61?source=embed_watch_on_loom_cta
https://www.loom.com/share/775da2c8809d4dc2813db013b8bd7a61?source=embed_watch_on_loom_cta
https://www.loom.com/share/775da2c8809d4dc2813db013b8bd7a61?source=embed_watch_on_loom_cta
https://www.loom.com/share/775da2c8809d4dc2813db013b8bd7a61?source=embed_watch_on_loom_cta

When the Visualization Panel is open, its settings will display in the right hand

Context Panel:

The Masking Panel consists of the following elements:

The Editable Area dropdown has two selections - Everywhere and Inside all

segments.

Selecting Everywhere allows you to draw on any part of the canvas.

Selecting Inside all segments makes it impossible for the user to annotate on an

unannotated area of the canvas. In other words, the user must annotate within the

bounds of an existing annotation.

Window Width

Window Level

Optional Presets

Inverted View

Pixel Interpolation

Label Opacity

Label Outlines

Editable Area dropdown

Modify Other Segments dropdown

Restrict by pixel intensity toggle

Masking Range slider

Threshold Range Selector

Masking

Editable Area

The Modify Other Segments dropdown helps you control how your painting affects

other existing annotations.

Selecting Overlap will allow you to paint on top of other annotations. This process is

additive, which means annotating with Overlap does not alter or delete other

annotations.

Selecting Overwrite unlocked segments will also allow you to paint on top of other

annotations, but you will overwrite (and therefore delete) anything else that you

paint on top of.

For a visual walkthrough of how to configure Editable Area and Modify Other

Segments settings, as well as a demonstration of the differences between them,

please see the following video tutorial:

Overlapping Segmentations

2 min2 min 53 views53 views

0

Modify Other Segments

Restrict by Pixel Intensity

https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0

To speed up segmentation, you can create a masking range by applying an upper

and lower boundary for the HU values/intensities of your image or volume.

To enable Masking, select any Object Label of type Segmentation in the left hand

toolbar and click on Restrict by pixel intensity in the right hand Context Panel.

With Masking enabled, you will only be able to create annotations within the range

that you set, making it easy to avoid painting "outside the lines" of your target

structure.

You can also use the Threshold Range Selector, which allows you to interactively

define the bounds of your masking range. With the Range selector activated,

left click any part of a viewport to include it in the range or right click to

exclude it from the range.

The pixel restriction will be applied as long as the masking filter is toggled ON. These

settings are visible in the right hand Context Panel.

Segmentation

An overview of our Segmentation Toolkit, features that are often used alongside it,

and how to configure your toolkit for a Project.

Segmentation Tools

An overview of the difference between instance and semantic segmentation, and a

video walkthrough of how to do each on RedBrick AI.

Instance vs. Semantic

A video overview of how to overlap segmentations on RedBrick AI.

Overlapping Segmentations

An overview of Reference Standards, i.e. a set of Ground Truth annotations that you

can add to your Project as a visual reference for your labelers.

Reference Standards

Segmentation Tools

Instance vs. Semantic Segmentation

Overlapping Segmentations

Reference Standards

Segmentation Tools

The Brush Tool has two modes - 2D and 3D (toggled on the right-side panel). The 2D

brush is a circle, and the 3D brush is a sphere that segments across slices. You can

adjust the size of the brush using the slider in the right hand Context Panel or the

W & S hotkeys.

Left click + drag to segment and right click + drag to erase.

The Adaptive Brush automatically defines the edges of the structure you are

annotating, resulting in a smarter and more accurate workflow.

Brush Tool Overview

Tutorial - Brush Tool

57 sec57 sec 145 views145 views

0

Brush Tool

Adaptive Brush

https://www.loom.com/share/e64fe93018644cd4ad056103dff18c21?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/e64fe93018644cd4ad056103dff18c21?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/e64fe93018644cd4ad056103dff18c21?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/e64fe93018644cd4ad056103dff18c21?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/e64fe93018644cd4ad056103dff18c21?source=embed_watch_on_loom_cta&t=0

The Adhesion parameter allows you to determine how "strict" the Adaptive Brush is

with similar intensity values. A lower Adhesion value, for example, would be

recommended for annotating regions or structures with smooth gradients, whereas

a higher Adhesion value would be best for annotating with sharper gradients.

Adaptive Brush Mastery: we recommend adjusting your Windowing (and other

Visualization) settings along with your Adhesion levels to ensure optimal brush

behavior.

The Pen Tool has two modes - 2D and 3D (toggled on the right-side panel). The Pen

Tool allows you to annotate using a free-form contour. In 3D mode, the free-form

contour is extruded above and below the current slice.

Left click + drag to add a segment region and Right click + drag to remove a

region.

The Adaptive Brush in action

Pen Tool

The Scissor tool allows you to erase the unwanted section of your segmentation in

the 3D view plane.

Left click + Drag to erase the unwanted section

Pen Tool Overview

Tutorial - Pen Tool

44 sec44 sec 105 views105 views

0

3D Scissor Tool

https://www.loom.com/share/691c0c14e3514bea85af205f5db0261b?source=embed_watch_on_loom_cta
https://www.loom.com/share/691c0c14e3514bea85af205f5db0261b?source=embed_watch_on_loom_cta
https://www.loom.com/share/691c0c14e3514bea85af205f5db0261b?source=embed_watch_on_loom_cta
https://www.loom.com/share/691c0c14e3514bea85af205f5db0261b?source=embed_watch_on_loom_cta
https://www.loom.com/share/691c0c14e3514bea85af205f5db0261b?source=embed_watch_on_loom_cta

The Grow Tool is a semi-automated tool that uses image intensity information to

segment regions. By clicking and holding in a region, the segmentation will grow

outward from the point that you clicked on. The longer you hold, the longer the

region will grow.

Left click + hold (+ drag) to segment, right click + hold (+ drag) to erase.

3D-Scissor tool

27 sec27 sec 8 views8 views

Region Growing (Grow Tool)

https://www.loom.com/share/30b2db17a9374b06ad4e77fe5a09bf22?source=embed_watch_on_loom_cta
https://www.loom.com/share/30b2db17a9374b06ad4e77fe5a09bf22?source=embed_watch_on_loom_cta
https://www.loom.com/share/30b2db17a9374b06ad4e77fe5a09bf22?source=embed_watch_on_loom_cta
https://www.loom.com/share/30b2db17a9374b06ad4e77fe5a09bf22?source=embed_watch_on_loom_cta
https://www.loom.com/share/30b2db17a9374b06ad4e77fe5a09bf22?source=embed_watch_on_loom_cta

The contour tool lets you interact with masks as contours. Interacting with masks as

contours gives you special tools to create and edit annotations.

Select the contour tool, and click and drag on the canvas to draw a contour. To

complete the contour, simply intersect the initial node or any other edge of the

contour.

Grow Tool Overview

Tutorial - Grow Tool

59 sec59 sec 105 views105 views

0

Contour Tool

Creating a contour from scratch.

https://www.loom.com/share/8cc5cc78ef174ec08091b3de5c633574?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/8cc5cc78ef174ec08091b3de5c633574?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/8cc5cc78ef174ec08091b3de5c633574?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/8cc5cc78ef174ec08091b3de5c633574?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/8cc5cc78ef174ec08091b3de5c633574?source=embed_watch_on_loom_cta&t=0

Node edit. Select an existing mask and select the contour tool. When you hover

over an edge, you will see a node with a "target spline" appear. You can drag this

node to edit the "target spline" area interactively.

Edge redraw. You can redraw any edge by simply "overwriting" the edge by

intersecting it two times.

Editing existing masks as contours

You can interpolate between two masks using the Interpolate tool.

1. First, draw two masks on two different slices. These masks must be part of the

same entity.

2. With the Interpolate tool, select the edges of both masks one by one.

3. You will see an interpolated annotation in between the masks.

Interpolate

Toggle Cineloop to see the slices and where the interpolated masks are.

The Hole Filling Tool iteratively fills small holes in your segmentation. Click anywhere

on the canvas to start filling in small holes.

The Hole Filling Tool is designed to fill small holes. For larger holes, you may need to run

the Hole Filling Tool more than once (i.e. click several times).

For large volumes, 3D hole filling can be very computationally expensive. If your data

has more than 800 slices, we recommend only using 2D hole filling.

Hole Filling Overview

Tutorial - Hole Filling

29 sec29 sec 63 views63 views

0

Hole Filling Tool

Paint Bucket Tool

https://www.loom.com/share/2c7c4b7a0b5a40b696806dd5513b0d81?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/2c7c4b7a0b5a40b696806dd5513b0d81?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/2c7c4b7a0b5a40b696806dd5513b0d81?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/2c7c4b7a0b5a40b696806dd5513b0d81?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/2c7c4b7a0b5a40b696806dd5513b0d81?source=embed_watch_on_loom_cta&t=0

The Paint Bucket is helpful for closing single large holes. With the paint bucket tool

selected, click in any large hole to fill it automatically.

Island Removal deletes "islands" of segmentations. Simply click on any island

segmentation to remove it.

Conversely, you can enable Keep Currently Selected in the right hand Context Panel

to remove all of the islands except the one you clicked on.

The Boolean Operator Tool allows you to perform four operations on segmentations:

Copy, Add, Subtract, and Merge.

Island Tool Overview

Tutorial - Island Tool

27 sec27 sec 57 views57 views

0

Island Removal Tool

Boolean Operator Tool

https://www.loom.com/share/5db273c1770d47a5b48af7481d934e4b?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/5db273c1770d47a5b48af7481d934e4b?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/5db273c1770d47a5b48af7481d934e4b?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/5db273c1770d47a5b48af7481d934e4b?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/5db273c1770d47a5b48af7481d934e4b?source=embed_watch_on_loom_cta&t=0

The Copy Tool allows you to transform a segmentation into a perfect copy of

another.

With Segmentation X selected, enable the Copy Tool and click on Segmentation Y to

create a perfect copy of Segmentation X that occupies the same space.

The Add Tool allows you to add the pixel values of a segmentation to another.

With Segmentation X selected, enable the Add Tool and click on Segmentation Y to

add the pixel values of Segmentation Y to Segmentation X.

The Subtract Tool allows you to remove the pixel values of a segmentation from

another segmentation.

The Copy Tool in action

Copy Tool

Add Tool

Subtract Tool

With Segmentation X selected, enable the Subtract Tool and click on Segmentation Y

to remove the pixel values of Segmentation Y from Segmentation X.

The Merge Tool allows you to transform one type of segmentation island into

another.

With Segmentation X selected, enable the Merge Tool and click on an island of

Segmentation Y to merge the island to Segmentation X.

The Fast Automated Segmentation Tool (F.A.S.T.) is an automatic segmentation tool

powered by Meta AI's Segment Anything Model that allows users to rapidly generate

2D and 3D segmentations.

Add, Subtract, and Merge Tool Tutorial

Add Tool, Subtract Tool, Merge Tool

2 min2 min 35 views35 views

0

Merge Tool

Fast Automated Segmentation Tool (F.A.S.T. ⚡️)

https://www.loom.com/share/d72af53241874f64b7de1228b3f7868f?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/d72af53241874f64b7de1228b3f7868f?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/d72af53241874f64b7de1228b3f7868f?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/d72af53241874f64b7de1228b3f7868f?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/d72af53241874f64b7de1228b3f7868f?source=embed_watch_on_loom_cta&t=0

F.A.S.T. is powerful because of the way users can prompt the tool to generate an

accurate segmentation in real time. Under the hood, there are two components to

the system:

1. Image encoding, which takes place on the server side. The result of image

encoding is embeddings, which are special vector representations of the images

that are useful for machine learning.

2. Segmentation decoding, which takes place in the browser in real time.

To enable F.A.S.T. for your team, please do the following:

1. Request access at https://redbrickai.com/fast.

2. Within a Project, navigate to the Tool Settings page and enable F.A.S.T.

To start segmenting, create a segmentation instance, select the F.A.S.T. tool from the

top bar or using cmd/ctrl + b . Once the tool is selected, hover over a viewport to

F.A.S.T. Overview

Tutorial - F.A.S.T.

3 min3 min 119 views119 views

0

Generating 2D Segmentations with F.A.S.T.

https://www.loom.com/share/2d347785be3945b3bbb278c29f6da84a?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/2d347785be3945b3bbb278c29f6da84a?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/2d347785be3945b3bbb278c29f6da84a?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/2d347785be3945b3bbb278c29f6da84a?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/2d347785be3945b3bbb278c29f6da84a?source=embed_watch_on_loom_cta&t=0

start embedding computation for a single slice (you will see a loader spinner on the

top right of the viewport). You can prompt F.A.S.T. in a few different ways after the

embedding computation is complete:

1. Bounding Box prompts. Click + move mouse + click to draw a bounding box.

You will see the segmentation prediction compute in real time while you draw the

bounding box.

1. Key point refinement. After you draw the bounding box, you can optionally

refine the segmentation by prompting the system with key points.

Left click to add regions you want to add to the segmentation.

Right click to remove regions from the segmentation prediction.

2. Once you are happy with the segmentation preview, confirm it by using the

button on the right panel or shift + enter .

2. Instant click. alt/option + hover over objects to view a prediction preview. If

you are satisfied with any preview, click while pressing alt/option to confirm

the segmentation.

3D F.A.S.T. allows users to draw Bounding Boxes to define an interpolation range for

a 3D structure that is to be annotated.

The process for creating annotations with 3D F.A.S.T. is extremely similar to that of

2D F.A.S.T. You can find a full step-by-step breakdown of how to use 3D F.A.S.T.

below.

1. Create a new Instance of your desired Object Label by clicking on the “+” in the left

hand toolbar;

2. Select F.A.S.T. in the top of the screen and wait for the embedding computation to

complete on Slice X;

3. Create a Bounding Box around the structure you wish to annotate;

4. (Optional) Provide F.A.S.T. with additional input by using LMB/RMB ;

5. Navigate to the end of the range that you want to interpolate across (i.e., Slice Y);

Generating 3D Segmentations with F.A.S.T.

6. Repeat Step 3 (and optionally, Step 4) for the structure you wish to annotate on

Slice Y;

7. Once you are satisfied with the annotations, press Enter or click on “Finalize” in the

right hand toolbar to generate the pixel masks on every slice between Slice X and

Slice Y.

Processing times may increase when interpolating across large ranges. However, please

note that all subsequent work across the same range should be much faster, as the

embedding computations only have to be computed once per slice.

Firewalls, ad blockers, privacy extensions, and any other browser extensions that block

HTTP traffic are known to interfere with FAST.

The Dilate & Erode Tool allows you to expand or shrink the area of a segmentation.

With a segmentation selected, use left click to Dilate (grow) the area of the

segmentation and right click to Erode (shrink).

Use the Pixels to Change slider in the right hand Context Panel to control the

severity of the dilation or erosion.

Dilate & Erode Tool

The Smoothing Tool helps you remove peaks and valleys in noisy annotations.

With the Smoothing Tool selected, use left click to remove valleys and

right click to remove peaks.

The Dilate and Erode Tool in action

Dilate and Erode Tool

11 sec11 sec 34 views34 views

0

Smoothing Tool

https://www.loom.com/share/70582d4c25ff4dc99f553d8342b1b6eb?source=embed_watch_on_loom_cta
https://www.loom.com/share/70582d4c25ff4dc99f553d8342b1b6eb?source=embed_watch_on_loom_cta
https://www.loom.com/share/70582d4c25ff4dc99f553d8342b1b6eb?source=embed_watch_on_loom_cta
https://www.loom.com/share/70582d4c25ff4dc99f553d8342b1b6eb?source=embed_watch_on_loom_cta
https://www.loom.com/share/70582d4c25ff4dc99f553d8342b1b6eb?source=embed_watch_on_loom_cta

Your labeler toolkit can be customized at the Project level by navigating to the Tool

Settings page within your Project Settings.

Simply utilize the checkboxes for each tool to:

Smoothing Tool

36 sec36 sec 38 views38 views

0

set a custom default tool;

restrict/enable 2D and/or 3D annotation;

set a default mode (i.e. 2D or 3D);

enable/disable a Tool entirely;

Tool Configuration

https://www.loom.com/share/54c074b2300e464e906e4cff0f216f4d?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/54c074b2300e464e906e4cff0f216f4d?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/54c074b2300e464e906e4cff0f216f4d?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/54c074b2300e464e906e4cff0f216f4d?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/54c074b2300e464e906e4cff0f216f4d?source=embed_watch_on_loom_cta&t=0

Instance vs. Semantic

Semantic segmentation treats multiple objects of the same class as a single entity.

In the example below, you can see that the labeler is responsible for annotating a

single structure ("Vertebrae"), regardless of the vertebrae's classification (e.g. L1, S1,

etc.).

On the other hand, instance segmentation treats multiple objects of the same class

as distinct individual objects (or instances). In the example below, the annotator

must create a unique annotation (as represented by an Instance in Redbrick AI) for

each specific vertebrae.

Semantic Segmentation

On RedBrick AI, you can perform both semantic and instance segmentation by

controlling how many instances of a particular category you create on the left side

bar. If you create more than one instance of a single category, on export, you will be

able to correlate the instance ID's in your segmentation mask to your category

names.

Check out this video for an overview:

Instance Segmentation

Semantic vs. Instance Segmentation

2 min2 min 57 views57 views

0

https://www.loom.com/share/a157d1c350a34192bb53a33c51488d09?source=embed_watch_on_loom_cta
https://www.loom.com/share/a157d1c350a34192bb53a33c51488d09?source=embed_watch_on_loom_cta
https://www.loom.com/share/a157d1c350a34192bb53a33c51488d09?source=embed_watch_on_loom_cta
https://www.loom.com/share/a157d1c350a34192bb53a33c51488d09?source=embed_watch_on_loom_cta
https://www.loom.com/share/a157d1c350a34192bb53a33c51488d09?source=embed_watch_on_loom_cta

Overlapping Segmentations

If you are annotating multiple structures in the same pixel/voxel space, you can

utilize overlapping segmentations in RedBrick AI.

Any time you are using a Segmentation Tool (e.g. Brush Tool, Pen Tool, Contour Tool,

etc.), you can use the options in the Masking Panel to configure your overlapping (or

overwriting) behavior.

Specifically, you can utilize various combinations of the Editable Area and Modify

Other Segments menus to determine how your annotations will be overlapped or

overwritten. For a more comprehensive description of these menus and their

functions, please reference the relevant documentation.

Alternatively, please see the following short tutorial for a visual walkthrough of the

differences:

An overview of how to overlap segmentations

Overlapping Segmentations

2 min2 min 53 views53 views

0

Exporting Overlapping Segmentations

https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0
https://www.loom.com/share/536fa33679814e2f909e4944b1c0f8ba?source=embed_watch_on_loom_cta&t=0

When exporting a Task with overlapping segmentations, RedBrick AI generates a

unique annotation file for each segmentation.

The following JSON block is an example of how a single Task with two overlapping

annotations will be exported.

projectId/
|-- TaskName
 |-- SeriesName.nii.gz // NIfTI file containing all annotations
 |-- SeriesName
 |-- instance-1.nii.gz // NIfTI file for first overlapping segmenta
 |-- instance-2.nii.gz // NIfTI file for second overlapping segment

Heat maps
Beta release on https://preview.redbrickai.com

Heatmaps provide a way to overlay scalar volumetric data over the base image for

reference purposes. You will have the ability to adjust the multiple color gradients

and thresholding options to visualize the data.

Heatmaps must be uploaded via the SDK.

For the complete task format, please refer to

https://sdk.redbrickai.com/formats/index.html

Please install the pre-release version of the RedBrick SDK (

pip install redbrick-sdk==2.17.7b1)

Here is a sample script to upload heat-maps in task.

type Series {
 ...
 heatMaps: [HeatMap]
}

type HeatMap {
 name: string;
 item: string; // file path
 preset?: string;
 dataRange?: [number, number];
}

Format:

Upload

https://sdk.redbrickai.com/formats/index.html

Visualization settings can be toggled under the Visualization panel on the right

sidebar.

from typing import List

import redbrick
from redbrick.types.task import InputTask

ORG_ID = "ORG_ID"
PROJECT_ID = "PROJECT_ID"
API_KEY = "API_KEY"
URL = "https://preview.redbrickai.com"

project = redbrick.get_project(ORG_ID, PROJECT_ID, API_KEY, URL)

points: List[InputTask] = [
 {
 "name": "sdk-public",
 "series": [
 {
 "items": [
 "/path/to/image/inst1.dcm",
 "/path/to/image/inst2.dcm",
 "/path/to/image/inst3.dcm",
],
 "heatMaps": [
 {"name": "heatmap 1", "item": "/path/to/heatmap1.nii.g
 {"name": "heatmap 2", "item": "/path/to/heatmap2.nii.g
],
 }
],
 }
]

project.upload.create_datapoints(redbrick.StorageMethod.REDBRICK, points)

Visualization

Python SDK & CLI

Installation & API Keys

The RedBrick AI SDK and CLI are available on PyPI and can be installed using pip .

The SDK and CLI are packaged together.

The SDK and CLI work on Mac, Windows, and Linux.

They are compatible with python version 3.8+

An API Key is needed to use either the Python SDK or Command Line Interface.

Create an API key in the API Keys section on the left sidebar.

$ pip install -U redbrick-sdk

Installation

API Keys

https://pypi.org/project/redbrick-sdk/

Only Organization Admins can create API Keys. The API key will have all the same

permissions that Organization Admins have.

For most SDK / CLI operations, you will need your organization and/or project ids.

These are unique ids for each entity. You can find both the Organization and Project

ID inside the Settings Page of any Project.

Organization and Project IDs

You can also find the Organization and Project IDs within the browser URL -> head

over to any project - https://app.redbrickai.com/<org_id>/projects/<project_id>.

SDK Overview

The RedBrick AI Python SDK is a Python package that allows developers to interact

with the RedBrick AI application programmatically.

We recommend you use the Python SDK if you want to:

For simple data import and annotation export, we recommend you use the CLI,

which has a simple interface with optimizations for basic use cases.

CLI Overview

This SDK documentation is intended to cover high-level guides and use cases. If you

are interested in more detailed documentation of the SDK interface, please visit the

full SDK reference documentation.

Nearly all operations with the SDK are performed on either the Project or

Organization objects. You can instantiate these objects using your API Key, Org ID,

and Project ID.

Build data pipelines with Python and want to integrate your RedBrick AI

annotation;

Write advanced scripts beyond simple import & export;

Take advantage of certain features such as HTML Tooltips, Series and/or Task

Level Metadata, or Taxonomy Nesting;

Initializing the RedBrick SDK in Python

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.project.RBProject
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.organization.RBOrganization
https://docs.redbrickai.com/projects/taxonomies#html-tooltips
https://docs.redbrickai.com/python-sdk/formats/full-format-reference#items-list-and-tasks.json
https://docs.redbrickai.com/python-sdk/formats/full-format-reference#items-list-and-tasks.json
https://docs.redbrickai.com/python-sdk/formats/full-format-reference#items-list-and-tasks.json
https://docs.redbrickai.com/projects/taxonomies#nested-taxonomies

Both redbrick.get_project and redbrick.get_org take an optional url argument that

defaults to https://api.redbrickai.com.

If you are using a private/single-tenant deployment of RedBrick AI, this will need to be

changed for your deployment - reach out to us for confirmation of what your case-

specific URL needs to be.

import redbrick

project = redbrick.get_project(
 org_id="...",
 project_id="...",
 api_key="...",
)
organization = redbrick.get_org(
 org_id="...",
 api_key="...",
)

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.get_project
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.get_org
https://api.redbrickai.com/

Importing Data & Annotations

The RedBrick AI SDK allows you to programmatically import data and/or annotations

with a Python script. You can import either locally or externally stored data via the

SDK using the create_datapoints method.

Please see the full reference documentation for create_datapoints here.

Perform the standard RedBrick AI SDK setup to create a Project object.

To import locally stored data, create a list of points with relative file paths to your

locally stored data, and use the redbrick.StorageMethod.REDBRICK storage ID.

The points array follows the format of the items list.

To import data stored in an external storage method such as AWS s3, be sure to use

the Storage ID found on the Storage tab of your RedBrick AI account instead of

project = redbrick.get_project(org_id, project_id, api_key)

create a list of file paths to your locally stored data
points = [{"items": ["path/to/data.nii"], "name": "..."}]

perform the upload operation
project.upload.create_datapoints(
 storage_id=redbrick.StorageMethod.REDBRICK,
 points=points
)

Import locally stored images

Import externally stored images

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.upload.Upload.create_datapoints
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.upload.Upload.create_datapoints
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.upload.Upload.create_datapoints
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.StorageMethod
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.StorageMethod
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.StorageMethod

redbrick.StorageMethod.REDBRICK .

Visit our documentation on external storage to learn how to integrate your own

external storage like AWS s3, GCS, or Azure blob.

First, please follow our guide on preparing your items list for annotation import to

prepare your points object correctly.

Importing Annotations Guide

Click on the field to copy the Storage ID to your clipboard!

project.upload.create_datapoints(
 storage_id=redbrick.StorageMethod.REDBRICK,
 points=points
)

Import annotations

Importing locally stored annotations & images

project.upload.create_datapoints(
 storage_id="your_storage_id",
 label_storage_id=redbrick.StorageMethod.REDBRICK
 points=points
)

project.upload.create_datapoints(
 storage_id="your_storage_id",
 label_storage_id="your_storage_id"
 points=points
)

Importing locally stored annotations with externally

stored images

Importing externally stored annotations and images

Programmatic Label & Review

It may be useful to programmatically add labels to your uploaded data or perform a

review on queued tasks. This scenario may arise if you have an automated way of

reviewing data or if you want to bulk-process tasks.

Please see the detailed reference documentation for put_tasks here.

You can only use put_tasks on Tasks assigned to your API key.

Please consult our documentation to learn more about how to assign Tasks to your API

key.

First, perform the standard RedBrick AI SDK set-up to create a project object.

Next, you need to get a list of Tasks you want to label/review. You can do this by:

1. Searching for the task_id through the RedBrick AI UI.

2. Retrieving the task_id from your filename/custom name from the Items List

using search_tasks.

3. Retrieving tasks assigned to your API key using list_tasks .

Add your annotations within the series field, along with the task_id . Please refer

to the reference documentation for the format of the annotations in Series.

The corresponding Task must be queued in the Label Stage and assigned to your API

key.

project = redbrick.get_project(org_id, project_id, api_key)

Programmatically Label Tasks

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.labeling.Labeling.put_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.labeling.Labeling.put_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.labeling.Labeling.put_tasks
https://docs.redbrickai.com/python-sdk/sdk-overview/assigning-and-querying-tasks#assign-tasks-to-the-current-user

Add your review decision in the review_result argument, along with the task_id .

The corresponding Task must be queued in the Review stage that you specify in

stage_name and must be assigned to your API key.

Once your Task goes through all of the stages in your workflow, it will be stored in

the Ground Truth Stage. If you notice issues with one or more of your Ground Truth

Tasks, you can either modify them manually within the UI while the Tasks are still in

the Ground Truth Stage or send them back to the Label Stage for correction.

First, get a list of the task_id s you want to send back to Label. You can do this by

exporting only Ground Truth Tasks and filtering them. Then, use

move_tasks_to_start to send them back to Label.

tasks = [
 {
 "taskId": "...",
 "series": [{...}]
 },
]

Submit tasks with new labels
project.labeling.put_tasks("Label", tasks)

Save tasks as draft with new labels
project.labeling.put_tasks("Label", tasks, finalize=False)

Set review_result to True if you want to accept the tasks
project.review.put_tasks("Review_1", [{taskId: "..."}], review_result=True

Set review_result to False if you want to reject the tasks
project.review.put_tasks("Review_1", [{taskId: "..."}], review_result=Fals

Add labels if you want to accept the tasks with correction
project.review.put_tasks("Review_1", [{taskId: "...", series: [{...}]}])

Programmatically Review Tasks

Re-annotate Ground Truth Tasks

All corresponding Tasks need to be in the Ground Truth Stage. This function will not

work for Tasks queued in Review.

task_ids = ["...", "..."]
project.labeling.move_tasks_to_start(task_ids=task_ids)

Assigning & Querying Tasks

The SDK offers multiple ways to query/search through your project tasks and

programmatically assign them to various users.

Use list_tasks to search for tasks by name and get their corresponding task_id .

Often, users will have Task name s readily accessible, and can use list_tasks to get

the corresponding task_id, which may be needed in other SDK functions.

Please see a detailed reference for list_tasks here.

Use assign_task when you already have the task_id you want to assign to a

particular user. If you don’t have the task_id , you can query all the Tasks using

list_tasks or query tasks assigned to a particular user/unassigned tasks using

list_tasks(user_id="...") .

project = redbrick.get_project(org_id, project_id, api_key)

tasks = project.export.list_tasks() # fetches all tasks
specific_task = project.list_tasks(task_name="...") # fetches specific tas

Search by Task Name

Assign Tasks to a User

Assign to a Specific User

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.search_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.search_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.search_tasks

Use list_tasks in conjunction with a specific user_id when you want to retrieve

the Tasks assigned to a particular user. This can be useful in preparation for using

assign_tasks to programmatically assigning unassigned tasks, or put_tasks to

programmatically label/review tasks assigned to you.

You can also fetch all unassigned Tasks in a particular stage. This information may be

useful when choosing which Tasks to assign to users.

project = redbrick.get_project(org_id, project_id, api_key)

Assign tasks in Label stage to a specific user
project.labeling.assign_tasks(task_ids=["..."], email="...")

Assign tasks in Review stage to specific user
project.review.assign_tasks(task_ids=["..."], email="...")

project = redbrick.get_project(org_id, project_id, api_key)

Get Tasks assigned to email@email.com in Label Stage
project.export.list_tasks(labeling.(stage_name="Label", user_id="email@ema

Get Tasks assigned to email@email.com in Review_1 Stage
project.export.list_tasks(stage_name="Review_1", user_id="email@email.com

Retrieve Queued Tasks

Retrieve Tasks Assigned to Specific User

Retrieve Unassigned Tasks

With the correct configuration of list_tasks(), you can perform functions as specific as

retrieving a list of Tasks from a specific Stage to your specific API key. Please see the

code snippet below for an example:

project = redbrick.get_project(org_id, project_id, api_key)

Get unassigned tasks in Label labeling stage
project.export.list_tasks(redbrick.TaskFilters.UNASSIGNED, stage_name="Lab

Get unassigned tasks in Review_1 review stage
project.export.list_tasks(redbrick.TaskFilters.UNASSIGNED, stage_name="Rev

project = redbrick.get_project(org_id, project_id, api_key)

Get tasks assigned to your API key in Label stage
project.export.list_tasks(
 redbrick.TaskFilters.QUEUED,
 stage_name="Label",
 user_id=project.context.key_id
)

Retrieve Tasks Assigned to You

Exporting Annotations

You can make use of RedBrick AI's Python SDK to export your annotations using a

Python script.

Within the Python SDK, annotations are exported in two ways:

1. The export_tasks function returns a Python object containing meta-data

information and any vector annotations (measurements, landmarks, etc.). Please

see the format of the object here.

2. By default, segmentation data is written to your disk in NIfTI format.

Segmentation data can also be exported in PNG or RT Struct by manipulating the

parameters of the export_tasks function. Please view the detailed

export_tasks reference here.

If you're attempting a one-time export or don't have intensive requirements for your

export, the CLI also provides a simple and optimized workflow for exporting a Project's

annotations.

RedBrick AI exports annotations in a JSON structure, accompanied by NIfTI-1 masks

for segmentations. All data will be exported within a folder named after your

project_id , with the following structure:

project_id/
├── segmentations
│ ├── study01
│ │ └── series1.nii
│ └── study02
│ ├── series1.nii
│ └── series2.nii
└── tasks.json

Export Folder Structure

https://docs.redbrickai.com/python-sdk/reference/export-annotation-format
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://docs.redbrickai.com/python-sdk/cli-overview/exporting-annotations
https://docs.redbrickai.com/python-sdk/cli-overview/exporting-annotations
https://nifti.nimh.nih.gov/nifti-1/

The above structure is for a standard export (i.e. not semantic, not binary mask, etc.)

and assumes no overlapping segmentations.

The segmentation directory will contain a single sub-directory for each task in your

export. The sub-directories will be named after the task name . A single task

(depending on whether it was single series or multi-series) can have one or more

segmentations.

The individual segmentation files will be in NIfTI-1 format and be named after the

user-defined series name. If no series name is provided on upload, RedBrick will

assign a unique name. Corresponding meta-data ex. category names will be provided

in tasks.json.

As always, you should first perform the standard RedBrick AI SDK setup to create a

Project object.

With a new Project object created, you can export your Project's Tasks in various

ways. Please see some common examples below.

The export_tasks() function exports segmentation files for all Ground Truth Tasks

by default. To export All Tasks, set the only_ground_truth parameter to False .

project = redbrick.get_project(org_id, project_id, api_key)

annotations = project.export.export_tasks(only_ground_truth=False)

Segmentations Subdirectory

Code Examples

Export All Tasks

You can export only the Tasks in Ground Truth, i.e., Tasks that have successfully

made it through all Label and Review Stages.

Export selected Tasks by specifying Task IDs.

An audit trail can be useful for regulators interested in your quality control

processes, as well as for managing your internal QA processes.

Please see a detailed reference for get_task_events here.

First, perform the standard RedBrick AI SDK setup to create a Project object.

If you'd like to generate an audit trail for all Tasks (not only those in the Ground

Truth Stage), be sure to include the only_ground_truth=False parameter.

gt_annotations = project.export.export_tasks(only_ground_truth=True)

specific_annotations = project.export.export_tasks(task_id="...")

Return an audit trail for all Tasks in all Stages
audit_trail = project.export.get_task_events(only_ground_truth=False)

Export Only Ground Truth

Export Specific Tasks

Generate an Audit Trail

Audit Trail - All Tasks

Audit Trail - Ground Truth Tasks Only

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_task_events
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_task_events
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_task_events

Retrieve an audit trail for all Ground Truth Tasks. Please note that by default,

get_task_events only returns audit information for Tasks in the Ground Truth

Stage.

The returned object will contain data similar to the code snippet below, where each

entry will represent a single Task (uniquely identified by taskId). The events array

contains all key events/actions performed on the Task, with events[0] being the

first event.

The following is a non-exhaustive list of other available functionalities when using the

Export class. A full list of the capabilities of our Export class can be found here.

project = redbrick.get_project(org_id, project_id, api_key)

Return an audit trail for all Tasks currently in the Ground Truth Stage
audit_trail = project.export.get_task_events()

[
 {
 "taskId": "...",
 "currentStageName": "Label",
 "events": [
 {
 "eventType": "TASK_CREATED",
 "createdAt": "...",
 "isGroundTruth": false,
 "createdBy": "..."
 },
 {
 "eventType": "TASK_ASSIGNED",
 "createdAt": "...",
 "assignee": "...",
 "stage": "Label"
 }
]
 }
]

Track labeler or reviewer time spent on a Task with get_active_time() ;

Additional Capabilities

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#export
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#export
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#export
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_active_time
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_active_time
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_active_time

Fetch Task events from a specific timestamp to the present day using

get_task_events() and the from_timestamp parameter;

Easily search for Tasks based on a wide variety of criteria using list_tasks() ;

Perform a semantic export (that exports a single file per category name) using

export_tasks() ;

Configure Hanging Protocols;

Upload a script for Custom Label Validation;

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_task_events
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_task_events
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.get_task_events
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.list_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.list_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.list_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.settings.Settings.hanging_protocol
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.settings.Settings.label_validation

CLI Overview

The RedBrick AI Command Line Interface is a package that allows developers to

interact with the RedBrick AI application programmatically.

We recommend you use the CLI for most regular import & export actions. If you want

to write Python scripts to perform these actions, or you are interested in more

advanced scripting, please use our Python SDK.

This documentation covers high-level guides and usecases. If you are interested in

more detailed documentation of the CLI interface, please visit the full CLI reference

documentation.

Once you have installed the CLI, you need to configure your credentials.

The URL should default to https://api.redbrickai.com. If you are using a private/single-

tenant deployment of RedBrick AI, this will need to be changed for your deployment -

reach out to us for confirmation on what the URL needs to be.

For most scenarios, you will only need a single credentials profile. However, if you

want to create multiple profiles (perhaps for different organizations), you can do it in

the following way:

$ redbrick config
> Org ID: ...
> API KEY: ...
> URL: https://api.redbrickai.com
> Profile name: ...
✔ RedBrick AI Organization

$ redbrick config add

Configure your CLI credentials

https://redbrick-sdk.readthedocs.io/en/stable/cli.html
https://redbrick-sdk.readthedocs.io/en/stable/cli.html
https://redbrick-sdk.readthedocs.io/en/stable/cli.html
https://api.redbrickai.com/

To change your profile:

$ redbrick config set

Creating & Cloning Projects

Almost all CLI operations need to be performed within a local project directory. A

local project directory can be created by cloning a RedBrick AI project, or by creating

a new project using the CLI.

To create a new project, first navigate to an empty directory. We recommend

creating a new directory, and naming it after your new project.

Now to create a new project, simply run:

You can now verify your current directory is a local project directory by doing:

$ mkdir my-new-project
$ cd my-new-project

$ redbrick init
> Name: my-new-project
> Taxonomy: my-taxonomy-name
> Reviews: 1

$ redbrick info
 Organization
╭──────┬──────────────────────────────────────
│ ID │ ... │
│ Name │ My Organization │
╰──────┴──────────────────────────────────────
 Project
╭──────────┬──────────────────────────────────
│ ID │ ...
│ Name │ my-new-project
│ Taxonomy │ my-taxonomy-name
│ URL │ https://app.redbrickai.com/.../projects/.../
╰──────────┴──────────────────────────────────

Creating a new project

You can clone an existing project that you (or someone else) created.

You can directly clone a project using it's project ID.

The project will now be cloned in a directory named after your project (within your

current working directory).

$ redbrick clone
> Project:
❯ 3/3
❯ my-new-project (...)
 my-first-project (...)
 my-old-project (...)

$ redbrick clone PROJECTID # replace PROJECTID with your project's ID

Clone an existing project

Import Data & Annotations

You can easily import large amounts of data from the command line interface.

Before following this guide, make sure to set up credentials for the CLI.

To upload images that are stored in a non-conventional folder structure, you can

define the structure using an items JSON file and upload it like this.

If you don't want to use an items file for upload, ensure your data is stored within the

correct folder structure defined in our documentation. You can only upload a single

data type in one upload operation. See the supported file types here.

You can see all available types in the CLI upload reference documentation.

To group your images by study, see here for examples, input the following:

$ redbrick upload path/to/items.json

$ redbrick upload path/to/data/ --type DICOM3D

$ redbrick upload path/to/data/ --as-study

Importing locally stored images

Upload using an items file

Group images by study

Upload video frames

https://redbrick-sdk.readthedocs.io/en/stable/cli.html#Positional%20Arguments_repeat8

To upload a video by uploading individual frames, input the following:

To import data that is stored externally (e.g., in an AWS s3 bucket), you must specify

the storage ID. You can find your storage solution's unique Storage ID in the Storage

tab of the RedBrick AI platform.

Prepare an Items List containing references to your externally stored files.

To import annotations with your data, you must first create an items JSON file

following the import annotations guide.

$ redbrick upload path/to/videoframes/ --as-frames --type VIDEOFRAMES

Click on the field in order to copy the value to your clipboard.

$ redbrick upload items.json --storage STORAGEID # replace STORAGEID with

Importing externally stored images

Import annotations

Importing Annotations Guide

The following command will upload your (locally stored) annotation files and your

image files (stored in STORAGEID):

If your annotation files are also stored externally, you can run the following

command:

$ redbrick upload path/to/items.json # items.json must have local file pat

$ redbrick upload path/to/items.json --storage STORAGEID

$ redbrick upload path/to/items.json --storage STORAGEID --label-storage

Import locally stored annotations & images

Import locally stored annotations with externally stored

images

Import externally stored annotations & images

Exporting Annotations

The RedBrick CLI allows you to easily export your Project's annotations within a local

project directory.

Please note that the export function only fetches newly created annotations

when run. It will not generate an annotation file for a Task if no annotation work has

been completed and saved on said Task.

For example, if you upload 100 images to your Project, annotate 80 of them and

initiate an export using the CLI, the CLI will export annotations for 80 Tasks.

If your team annotates 5 additional Tasks the next day and initiates an export, the

CLI will only export annotations for the 5 newly annotated Tasks, bringing the total

number of annotation files in your local directory to 85.

By default, all segmentation files are exported in NIfTI-1 format. Please see our Format

Reference for more information on exported annotations and alternative formats (such

as PNG or RT Struct).

RedBrick AI exports annotations in a JSON structure, accompanied by NIfTI-1 masks

for segmentations. All data will be exported within a folder named after your

project_id , with the following structure:

Overview

Export Folder Structure

https://nifti.nimh.nih.gov/nifti-1/

The segmentation directory will contain a single sub-directory for each task in your

export. The sub-directories will be named after the task name . A single task

(depending on whether it was single series or multi-series) can have one or more

segmentations.

The individual segmentation files will be in NIfTI-1 format and be named after the

user-defined series name. If no series name is provided on upload, RedBrick will

assign a unique name. Corresponding meta-data ex. category names will be provided

in tasks.json.

You can also find all of these steps, as well as pre-configured CLI commands, inside the

"Export Labels" section of your Project Settings

To export your data, first ensure that your credentials file has been properly

configured and you have created a local project directory.

Next, navigate to the newly created Project directory.

project_id/
├── segmentations
│ ├── study01
│ │ └── series1.nii
│ └── study02
│ ├── series1.nii
│ └── series2.nii
└── tasks.json

$ cd my-project

Segmentations Subdirectory

Export Annotations to a Local Directory
using the CLI

https://docs.redbrickai.com/python-sdk/cli-overview
https://docs.redbrickai.com/python-sdk/cli-overview
https://docs.redbrickai.com/python-sdk/cli-overview

Once inside your local project directory, you can initiate several types of exports.

Please see some common examples below or use redbrick export -h to see a full

list of export-related commands inside of the Terminal.

To export the latest state of all annotations for all Tasks (including those in Label and

Review stages) run the following command.

For exporting only those annotations associated with Tasks in the Ground Truth

Stage.

For clearing your local Redbrick cache and forcing a fresh download of all annotation

files within a Project.

For downloading your Project's image and/or volume files along with any created

annotations.

$ redbrick export

$ redbrick export groundtruth

$ redbrick export --clear-cache

$ redbrick export --with-images

Export Annotations for All Tasks

Export Ground Truth Tasks Only

Export Tasks and Clear Cache

Export Tasks with Images

If you initially uploaded DICOM images/volumes to RedBrick and would like to

convert them to NIfTI upon export (ensuring that both your annotation files and

images/volumes are in the same format), use the following command.

If you want to export tasks that are queued in a specific stage, for example, exporting

all tasks queued in Review_2, you can do so in the following way:

Generating an audit trail can be useful material for regulators interested in your

quality control processes and for managing your internal QA processes.

You can create such a report by running the following command within your local

project directory.

The exported JSON object will contain data similar to what is shown below. Each

entry will represent a single task (uniquely identified by taskId). The events array

contains all key events/actions performed on the task, with events[0] being the

first event.

$ redbrick export --with-images --dicom-to-nifti

$ redbrick export --stage Review_2

$ redbrick report

DICOM to NIfTI Conversion

Export Tasks from a Specific Stage

Export an Audit Trail

[
 {
 "taskId": "...",
 "currentStageName": "Label",
 "events": [
 {
 "eventType": "TASK_CREATED",
 "createdAt": "...",
 "isGroundTruth": false,
 "createdBy": "..."
 },
 {
 "eventType": "TASK_ASSIGNED",
 "createdAt": "...",
 "assignee": "...",
 "stage": "Label"
 }
]
 }
]

Importing Annotations Guide

You can import all annotation types that are supported in RedBrick AI, including

segmentations, classifications, bounding boxes, and more. Imported annotations will

appear automatically on your annotator's interface.

Annotations and images must be imported together at the start.

If you want to add annotations programmatically to images that have already been

uploaded, please use the programmatic label & review.

Annotation import is only supported through the SDK and CLI.

That is, you cannot use the direct upload UI to import annotations, and you must use

the items list with the SDK/CLI to provide the required metadata along with annotations.

To import images along with segmentations, you must provide us with:

1. Images in any supported format and NIftI segmentation files.

2. An items list that provides a mapping of:

Once you've prepared the items list in the format defined below, you can import the

images and annotations using the create_datapoints SDK method or CLI upload

method.

You can find the full format reference here. In this section, we will focus on importing

segmentations. In the examples below, pay attention to the following fields:

Segmentation files to volumes so that segmentations are applied to correct

images.

Values within segmentation file to taxonomy categories.

Items list for importing segmentations

1. segmentations : The segmentation files to be applied to the task.

2. segmentMap : Map the values present in the segmentation files to their

corresponding taxonomy categories.

Sometimes, segmentations for a single volume are stored in multiple segmentation

files, but these segmentation files are not binary masks. In this case, follow the

format below.

{1
 "name": "...", 2
 "series": [3
 {4
 "items": ["instance-01.dcm", "instance-02.dcm", ...],5
 "segmentations": "segmentation.nii.gz",6
 7
 // Read more about "segmentMap"8
 "segmentMap": {9
 "1": "category-a", 10
 "2": "category-b"11
 }12
 }13
]14
}15

I: One segmentation file per task

II: Multiple segmentation files per task

A common pattern is to store each segmentation instance in a separate NIfTI file as a

binary mask. In the example below, all non-zero values in segmentation-1.nii.gz

are meant to correspond to the taxonomy category category-a .

{
 "name": "...",
 "series": [
 {
 "items": ["instance-01.dcm", "instance-02.dcm", ...],

 // Read more about "segmentations"
 "segmentations": ["segmentation-1.nii.gz", "segmentation-2.ni

 // Read more about "segmentMap"
 "segmentMap": {
 "1": "category-a",
 "2": "category-b"
 }
 }
]
}

The values 1 and 2 must be present in either segmentation-1.nii.gz or

segmentation-2.nii.gz.

Values in segmentation-1.nii.gz & segmentation-2.nii.gz that are

not in segmentMap will not map to any taxonomy category. This will result

in uneditable, view-only annotations.

All values in segmentation.nii.gz that are not in segmentMap will not

be mapped to any taxonomy category in the editor.

Common mistakes for I and II.

III: Multiple binary segmentation files per task

{
 "name": "...",
 "series": [
 {
 "items": ["instance-01.dcm", "instance-02.dcm", ...],

 // Read more about "segmentations"
 "segmentations": ["path/segmentation-1.nii.gz", "path/segmenta
 "segmentMap": {

 // Read more about "1"
 "1": {

 // Read more about "category"
 "category": "category-a",

 // Read more about "mask"
 "mask": "path/segmentation-1.nii.gz",
 },
 "2": {
 "category": "category-b",
 "mask": "path/segmentation-2.nii.gz"
 },

 // Read more about "binaryMask"
 "binaryMask": true,
 }
 }
]
}

Formats

Full Format Reference

Most RedBrick flows incorporate two key JSON files:

1. Items List - a file which points RedBrick AI to visual assets within a third-party

storage solution;

2. tasks.json - a file generated upon export that contains a record of the

annotation work completed within a Project. Upon export, the tasks.json file

will contain a single entry for each Task;

If you'd like to upload annotations along with your data using either the CLI or the

SDK, please see the corresponding documentation.

Please see the definition (in TypeScript) of RedBrick's various objects below:

Items List and tasks.json

Object Reference

https://docs.redbrickai.com/importing-data/import-cloud-data/creating-an-items-list

type Tasks = Task[];

// Single task on RedBrick can be single/multi-series
type Task = {
 // Required on upload and export
 name: string;
 series: Series[];

 // Task level annotation information
 classification?: Classification;

 // Not required on upload, present in tasks.json
 taskId?: string;
 currentStageName?: string;
 createdBy?: string;
 createdAt?: string;
 updatedBy?: string;
 updatedAt?: string;

 // assign metadata to a Task on upload, present in tasks.json
 metaData?: { [key: string]: string }

 // assign priorities to a Task on upload
 priority?: number;

 // Prescribe task assignent upon upload
 preAssign?: {
 [stageName: string]: string
 }
};

// How to correctly format a Series object for upload
// A single series can be 2D, 3D, video etc.
// Also present in tasks.json
type Series = {
 items: string | string[];
 name?: string;

 segmentations?: string | string[];
 segmentMap?: {
 [instanceId: string]: number | string | string[] | {
 category: number | string | string[];
 attributes?: Attributes;
 mask?: string;
 };
 };
 binaryMask?: boolean;
 semanticMask?: boolean;

 pngMask?: boolean;

 landmarks?: Landmark[];
 landmarks3d?: Landmark3D[];
 measurements?: (MeasureLength | MeasureAngle)[];
 boundingBoxes?: BoundingBox[];
 cuboids?: Cuboid[];
 ellipses?: Ellipse[];
 polygons?: Polygon[];
 polylines?: Polyline[];

 classifications?: Classification[];
 instanceClassifications?: InstanceClassification[];
 metaData?: { [key: string]: string };
};

// Label Types

type Landmark = {
 point: Point2D;
 category: number | string | string[];
 attributes?: Attributes;

 // video meta-data
 video?: VideoMetaData;
};

type Landmark3D = {
 point: VoxelPoint;
 category: number | string | string[];
 attributes?: Attributes;
};

type MeasureLength = {
 type: 'length';
 point1: VoxelPoint;
 point2: VoxelPoint;
 absolutePoint1: WorldPoint;
 absolutePoint2: WorldPoint;
 normal: [number, number, number];
 length: number;
 category: number | string | string[];
 attributes?: Attributes;
};

type MeasureAngle = {
 type: 'angle';
 point1: VoxelPoint;

 point2: VoxelPoint;
 vertex: VoxelPoint;
 absolutePoint1: WorldPoint;
 absolutePoint2: WorldPoint;
 absoluteVertex: WorldPoint;
 normal: [number, number, number];
 angle: number;
 category: number | string | string[];
 attributes?: Attributes;
};

type BoundingBox = {
 pointTopLeft: Point2D;
 wNorm: number;
 hNorm: number;
 category: number | string | string[];
 attributes?: Attributes;
 stats?: MeasurementStats;

 // video meta-data
 video?: VideoMetaData;
};

type Cuboid = {
 point1: VoxelPoint;
 point2: VoxelPoint;
 absolutePoint1: WorldPoint;
 absolutePoint2: WorldPoint;
 category: number | string | string[];
 attributes?: Attributes;
 stats?: MeasurementStats;
}

type Ellipse = {
 pointCenter: Point2D;
 xRadiusNorm: number;
 yRadiusNorm: number;
 rotationRad: number;
 category: number | string | string[];
 attributes?: Attributes;
 stats?: MeasurementStats;

 // video meta-data
 video?: VideoMetaData;
}

type Polygon = {
 points: Point2D[];

 category: number | string | string[];
 attributes?: Attributes;
 stats?: MeasurementStats;

 // video meta-data
 video?: VideoMetaData;
};

type Polyline = {
 points: Point2D[];
 category: number | string | string[];
 attributes?: Attributes;

 // video meta-data
 video?: VideoMetaData;
};

type Classification = {
 category: number | string | string[];

 // video meta-data
 video?: VideoMetaData;
};

type InstanceClassification = {
 fileIndex: number;
 fileName?: string;
 values: { [attributeName: string] : boolean};
}

type Attributes =
 | { // Taxonomy V2 attributes
 attrId?: number;
 name?: string;
 optionId?: number | number[];
 value?: string | boolean | string[];
 }[]
 | { // Taxonomy V1 attributes
 [attributeName: string]: string | boolean | string[];
 };

type VideoMetaData = {
 frameIndex: number;
 trackId?: string;
 keyFrame?: number;
 endTrack?: Boolean;
};

The Task object represents a single task on RedBrick AI. It contains task-level meta-

data information about all the series within the task. A task can contain a single

series or multiple series (ex. a full MRI study).

A user-defined string is defined on upload, it is required to be unique across all tasks

in your project. The name is meant to be a human-readable string that can help

identify tasks ex. you can set name of a task to patient/study01 .

// i is rows, j is columns, k is slice
type VoxelPoint = {
 i: number;
 j: number;
 k: number;
};
// The position of VoxelPoint in physical space (world coordinate) compute
type WorldPoint = {
 x: number;
 y: number;
 z: number;
};
type Point2D = {
 xNorm: number;
 yNorm: number;
};

type MeasurementStats = {
 average: number;
 area?: number;
 volume?: number;
 minimum: number;
 maximum: number;
};

Object Glossary

Task

name: string

taskId?: string

A unique identifier generated for each Task by RedBrick AI. This value is provided on

export.

The Stage a Task is in is when it is exported.

The email address of the user who uploaded the Task.

The datetime this Task was created (i.e. uploaded).

The email of the last user to make edits to this Task.

The datetime that this Task was last edited.

When uploading a Task, prescribe which users will have the Task assigned to them by

Stage.

You can define the assignment for each Stage of the workflow, for example, Label

and Review,

{"Label": "name1@redbrickai.com", "Review": "name2@redbrickai.com"} .

A list of attributes assigned to an entire Task (or study, if the Task encapsulates an

entire study).

currentStageName?: string

createdBy?: string

createdAt?: string

updatedBy?: string

updatedAt?: string

preAssign?: { [stageName : string] : string }

classification: { attributes : [string : boolean] }

metaData?: { [key: string]: string }

A list of key value pairs that can be affixed to a Task. This information is visible in the

Annotation Tool.

priority?: number

Assign a priority value to a specific Task, which will influence the order in which the

Task displays on the Data Page. The Automatic Assignment protocol will also auto-

assign Tasks with a priority value to a user’s Labeling / Review Queue before moving

on to Tasks without priority values.

The Series object has metadata and annotations for a single Series within a Task. A

Series can represent anything from a single MRI/CT series, a video, or a single 2D

image.

If a Series contains annotations, you can expect one or more of the label entries to

be present (e.g. segmentations , polygons etc.).

The items entry is a list of file paths that point to your data. Please have a look at the

#items-listdocumentation for a fuller explanation of how to format for various

modalities and series/study uploads.

An optional user-defined string, needs to be unique across all series. Individual series

will be named after this value on the labeling tool. Exported segmentation files will

also be named using this value. Using the Series Instance UID here is good practice.

Series

items: string | string[]

name: string

classifications: { attributes: [string : boolean] }

https://www.loom.com/i/ea12e486bd8845d7b3b8a83fc115ad58
https://www.loom.com/i/ea12e486bd8845d7b3b8a83fc115ad58
https://www.loom.com/i/ea12e486bd8845d7b3b8a83fc115ad58

A list of attributes assigned to a specific Series.

The instanceClassifications object defines a series of boolean values that can be

assigned to individual instances (e.g. frames in a video).

metaData?: { [key: string]: string }

A list of key value pairs that can be affixed to a Series. This information is visible in

the Annotation Tool.

binaryMask?: boolean

Reflects the user’s choice of optionally exporting annotations as a binary mask.

semanticMask?: boolean

Reflects the user’s choice of optionally using semantic export.

pngMask?: boolean

Reflects the user’s choice of optionally exporting annotations as a PNG mask.

Here are the definition for some common entries present in some/all label entries.

The class of your annotations. This value is part of your Project Taxonomy. If the class

is nested, category will be string[] .

instanceClassifications: fileIndex | fileName | [values: { string :
boolean }]

Common Label Keys

category: string | string[]

attributes: { [attributeName: string]: string | boolean }

Each annotation can have accompanying attributes, that are also defined in your

Project Taxonomy. attributeName is defined when creating your Taxonomy.

VoxelPoint represents a three-dimensional point in image space, where i and j are

columns and rows, and k is the slice number.

WorldPoint represents a three-dimensional point in physical space/world

coordinates. The world coordinates are calculated using VoxelPoint and the Image

Plane Module.

Point2D represents a two dimensional point. This is used to define annotation

types on 2D data. xnorm has been normalized by image width, hnorm has been

normalized by image height.

fileIndex is an integer that corresponds to a specific frame in a video series.

fileName represents the name given to an image or specific frame in a video series.

A dictionary containing a variety of geometric information about certain Object

Labels.

voxelPoint: { i: number, j: number, k: number }

worldPoint: { x: number, y: number, j: number }

point2D: { xnorm: number, ynorm: number }

fileIndex: number

fileName: string

measurementStats: Dict

Measurement Stats

https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.2.html
https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.2.html
https://dicom.nema.org/medical/dicom/current/output/chtml/part03/sect_C.7.6.2.html

A dictionary (measurementStats) containing geometric information about certain

Object Labels.

average: number

The average pixel intensity value inside of a structure.

area?: number

The area of a 2D Object Label (e.g. Bounding Box, Ellipse), measured in square

millimeters.

volume?: number

The volume of a 3D structure (e.g. Cuboid), measured in cubic millimeters.

minimum: number

The lowest pixel intensity value present in the structure.

maximum: number

The highest pixel intensity value present in the structure.

A dictionary containing frameIndex , trackId , keyFrame , and endFrame .

This specifies which frame in a video sequence the annotation was created.

Video Meta Data

videoMetaData: Dict

frameIndex: number (video)

trackId: string (video)

A unique string that identifies distinct object tracks in a video sequence.

If true, this annotation was manually added on a particular video sequence. If false,

this annotation is a result of linear interpolation.

If true, the annotation is the last annotation for a particular video track segment.

A list of file paths of segmentation files for this series. Either a single .nii file, or

multiple .nii files containing different instances.

segmentMap?: { [instanceId: number]: { category: string | string[];
attributes?: Attributes } };

A mapping between a segmentation's instance ID, your Taxonomy category name,

and any accompanying attributes. The mapping will apply only to the current series,

and instance IDs must be unique across all series in a task (this is useful for instance

segmentation).

Please note that the segmentMap 's instanceId is generated incrementally based on

the order in which annotations were created by the labeler. You can find an

example JSON output below.

keyFrame: boolean (video)

endFrame: boolean (video)

Segmentations and segmentMap

segmentations?: string | string[]

The path for the annotation file associated with a specific instanceId.

Contains information about the Bounding Box Object Label.

The location of the top-left point of the bounding box.

"items": ["image-file.ima",],
"segmentations": "./path/to/segmentation/file.nii.gz",
"segmentMap": {
 "1": {
 // This is the first annotation the labeler created
 "category": "Vertebral Body"
 },
 "2": {
 // This is the second annotation the labeler created
 "category": "Vertebral Body"
 },
 "3": {
 // This is the third annotation the labeler created
 "category": "Vertebral Body"
 },
 "4": {
 // This is the fourth annotation the labeler created
 "category": "Spinal Canal Mass"
 },
 "5": {
 // This is the fifth annotation the labeler created
 "category": "Disc Pathology"
 }
},

mask?: string

BoundingBox

pointTopLeft: Point2D

wNorm, hNorm: number

The width and height of the bounding box, normalized by the width and height of the

image.

Contains information about the Polygon Object Label.

A list of 2D points that are connected to form a polygon. This list is ordered such that,

 is connected to . The last point is also connected to the first point to

close the polygon.

Contains information about the Length Measurement Object Label.

A length measurement is defined by two points, and the length measurement is the

distance between the two points.

Corresponding to point1 , point2 these are points in physical space.

Measurements can be made on oblique planes. normal defines the normal unit

vector to the slice on which this annotation was made. For annotations made on non-

oblique planes, the normal will be [0,0,1] .

point ​i point ​i+1

Polygon

points: Point2D []

MeasureLength

point1, point2 : VoxelPoint

absolutePoint1, absolutePoint2 : WorldPoint

normal: [number, number, number]

length: number

The value of the measurement in mm.

Contains information about the Angle Object Label.

Angle measurement is defined by three points, where the vertex is the middle point.

The angle between the two vectors (vertex -> point1 and vertex -> point2) defines the

angle measurement. These points are all represented in IJK image coordinate space.

Corresponding to point1 , point2 , vertex , these values are coordinates in the

DICOM world coordinate system i.e. physical space.

Measurements can be made on oblique planes. normal defines the normal unit

vector to the slice on which this annotation was made. For annotations made on non-

oblique planes, the normal will be [0,0,1] .

The value of the angle in degrees.

Contains information about the Ellipse Object Label.

pointCenter: point2D

MeasureAngle

point1, point2, vertex : VoxelPoint

absolutePoint1, absolutePoint2 : WorldPoint

normal: [number, number, number]

angle: number

Ellipse

Information regarding the exact center of the Ellipse Object Label.

xRadiusNorm: number

A numeric value equivalent to half the length of the Ellipse Object Label’s major axis.

yRadiusNorm: number

A numeric value equivalent to half the length of the Ellipse Object Label’s minor axis.

rotationRad: number

The rotation angle of the Ellipse Object Label, expressed in radians.

Contains information about the Landmark Object Label on 2D images.

point: point2D

The point in physical space on a 2D image where the Landmark is located.

Contains information about the Landmark Object Label on 3D volumes.

point: voxelPoint

The point in physical space on a 3D volume where the Landmark is located.

Landmark

Landmark 3D

Cuboid

Contains information about the Cuboid Object Label.

point1, point2: voxelPoint

Information about the initial point of the Cuboid (point1) and the final point (

point2 , opposite diagonal corner).

absolutePoint1, absolutePoint2: worldPoint

The position of VoxelPoints point1 and point2 in physical space (world

coordinate) computed using the Image Plane Module.

Consensus Formats

Consensus tasks.json

The consensus task object contains information about the consensus annotations for

this task. There will be a single entry for every annotator who annotated this task.

For example, if 3 users annotated each task in your project, the length of the

consensusTasks array will be 3.

The e-mail of the user who annotated the task.

The datetime when the user last updated the task.

// Single task on RedBrick can be single/multi-series
type Task = {
 // Required on upload and export
 name: string;
 consensus: true;
 consensusScore: number; // overall consensus score
 consensusTasks: ConsensusTask[]

 // Only required on export
 taskId?: string;
 currentStageName?: string;
 createdBy?: string;
 createdAt?: string;
 updatedBy?: string;
 updatedAt?: string;
};

type ConsensusTask = {
 updatedBy: string;
 updatedAt: string;
 scores: {secondaryUserEmail: string, score: number}[]
 series: Series[]
}

The ConsensusTask Object

updatedBy: string

updatedAt: string

scores: {secondaryUserEmail: string, score: number}[]

The scores entry compares the current users' annotations with every other user.

The scores array will be of length n-1, where n is the number of users who annotated

this task. score is the similarity score between the current user, and

secondaryUserEmail .

The series entry for the current user only.

series: Series[]

Taxonomy Object

type Taxonomy = {
 orgId: string;
 name: string;
 createdAt: datetime;
 archived: boolean;
 isNew: true;
 taxId: string;
 studyClassify: Attribute[];
 seriesClassify: Attribute[];
 instanceClassify: Attribute[];
 objectTypes: ObjectType[];
}

type ObjectType = {
 category: string;
 classId: number; // [0, n)
 labelType: BBOX | POINT | POLYLINE | POLYGON | ELLIPSE | SEGMENTATION
 attributes?: Attribute[];
 color?: string;
 archived?: boolean;
 parents?: string[];
 hint?: string;
}

type Attribute = {
 name: string;
 attrType: BOOL | TEXT | SELECT | MULTISELECT;
 attrId: number;
 options?: AttributeOption[];
 archived?: boolean;
 parents?: string[];
 hint?: string;
 defaultValue?: number | number[]; // pre-populated optionId(s) for SE
}

type AttributeOption = {
 name: string;
 optionId: number;
 color?: string;
 archived?: boolean;
}

Export Structure

RedBrick AI offers several ways to structure exports based on the needs of your

annotation workflow.

These variations in export directly impact the contents of the subdirectory that is

generated when exporting your annotation files (or, optionally, images) from

RedBrick AI, and occasionally the tasks.json file as well.

Please see the following walkthrough for example structures, explanations, and

other clarifications regarding export structures.

For the purposes of this documentation, a standard export is any RedBrick AI export

that does not include overlapping segmentations or variant export parameters

such as semantic_mask or binary_mask .

For Tasks with a single Series or object (e.g. a single 2D DICOM X-ray), RedBrick AI

generates a single NIfTI file upon export.

Each file contains all of the individual annotations associated with a particular Series

as defined by the segmentMap , which can be found in the tasks.json file.

projectId/
|-- segmentations
 |-- Task_001 // Folder with the name of the Task (i.e. "Datapoint" o
 |-- SeriesName.nii.gz

Standard Export

Single Series

Multi-Series

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks

For Tasks with multiple Series, RedBrick AI generates a single NIfTI file per Series

upon export.

Each file contains all of the individual annotations associated with a particular Series

as defined by the segmentMap , which can be found in the tasks.json file.

For Tasks with overlapping segmentations, RedBrick AI generates the following for

each Series:

Please note that the annotation files in the subdirectory are generated

incrementally based on the order in which annotations were created by the

labeler.

SDK Mastery: RedBrick AI automatically enables binary_mask for Tasks that have

overlapping segmentations.

projectId/
|-- segmentations
 |-- Task_001 // Folder with the name of the Task (i.e. "Datapoint" o
 |-- Series_001.nii.gz
 |-- Series_002.nii.gz
 |-- Series_003.nii.gz

an aggregated annotation file containing all of the annotations in the Series;

a subdirectory that has the same name as the Series;

within the subdirectory, an individual annotation file for each segmentation;

projectId/
|-- segmentations
 |-- TaskName
 |-- SeriesName.nii.gz // NIfTI file containing all annotations
 |-- SeriesName
 |-- instance-1.nii.gz // NIfTI file for first overlapping se
 |-- instance-2.nii.gz // NIfTI file for second overlapping s

Overlapping Segmentations

You can read more about the binary_mask parameter and how it affects exports here.

If you would prefer to map your annotations directly to the corresponding Object

Label of your Taxonomy, you can use the semantic_mask parameter of the Python

SDK's export_tasks() function.

The Semantic Export enforces a direct mapping between an Object Label and the

segmentMap value. While this does not change the structure of the export

subdirectory itself, Semantic Export does bring significant changes to the

tasks.json file generated upon export.

Please compare the two sample segmentMap outputs below.

Standard Export

Semantic Export

https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks
https://redbrick-sdk.readthedocs.io/en/stable/sdk.html#redbrick.export.Export.export_tasks

tasks.json/
 "items": ["image-file.ima",],
 "segmentations": "./path/to/segmentation/file.nii.gz",
 "segmentMap": {
 "1": {
 // This is the first annotation the labeler created
 "category": "Glioma"
 },
 "2": {
 // This is the second annotation the labeler created
 "category": "Glioma"
 },
 "3": {
 // This is the third annotation the labeler created
 "category": "Encephalitis"
 },
 "4": {
 // This is the fourth annotation the labeler created
 "category": "Abscess"
 },
 ...
 }

Semantic Export

tasks.json/
 "items": ["image-file.ima",],
 "segmentations": "./path/to/segmentation/file.nii.gz",
 "segmentMap": {
 "3": {
 "category": "Glioma"
 },
 "6": {
 "category": "Abscess"
 },
 "8": {
 "category": "Encephalitis"
 },
 ...
 }

When a Taxonomy is created, each Object Label is assigned an immutable and

unique integer value - a Category Number.

Unlike Standard Export, which generates the segmentMap integer incrementally

based on the order the labeler created the annotations, the Semantic Export directly

correlates this Category Number to your annotation within the NIfTI file, regardless

of how the annotator did their work.

In other words (and using the example above), any Glioma annotation will always

have a segmentMap value of 3 upon semantic export, any Abscess will always have a

value of 6, and so on.

Semantic Export will strictly enforce the principles of semantic annotation even in the

presence of human error.

If you attempt to use Semantic Export on a Task that has multiple Entities associated

with a single Object Label, RedBrick AI will aggregate all of the Entities into a single

annotation file.

In this case, only the Object Label Attributes of the very first Entity will be preserved.

The output format will be the same, but the output annotation files will be named

according to their Category Number.

Common Questions

Why are the integer values different for the Semantic Export's segmentMap ?

What if a labeler creates 2 Entities for a single Object Label and then I try to use

Semantic Export?

What if I need to use Semantic Export on Tasks with overlapping segmentations?

https://docs.redbrickai.com/annotation/creating-editing-and-deleting-annotations#creating-object-labels

No. The Category Number is immutable for all Object Labels, regardless of how you

re-order or otherwise manipulate the contents of your Taxonomy in the UI.

When exporting annotations from a Consensus Project, the tasks.json file and the

segmentations/ directory will have a unique structure.

Your export subdirectory will contain the annotation files for all users who generated

and saved annotations on RedBrick AI. Each individual annotation file is marked with

a numeric index (e.g. "_1" at the end of the file name, and you can map this file to the

corresponding user by referencing your tasks.json file.

projectId/
|-- segmentations
 |-- TaskName
 |-- SeriesName.nii.gz // Annotation file containing all segmen
 |-- SeriesName // subdirectory
 |-- category-x.nii.gz // where x = the structure's Category
 |-- category-y.nii.gz // where y = the structure's Category

project_id/
├── segmentations
│ ├── Task_001
│ │ ├── seriesA_1.nii
│ │ └── seriesA_2.nii
│ └── Task_002
│ ├── seriesA_1.nii
│ └── seriesA_2.nii
└── tasks.json

What if I re-ordered the Object Labels in my Taxonomy? Does this affect the

segmentMap for Semantic Export?

Consensus Export

Useful Links

